toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author (down) Victor Campmany; Sergio Silva; Juan Carlos Moure; Toni Espinosa; David Vazquez; Antonio Lopez edit   pdf
openurl 
  Title GPU-based pedestrian detection for autonomous driving Type Conference Article
  Year 2016 Publication GPU Technology Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords Pedestrian Detection; GPU  
  Abstract Pedestrian detection for autonomous driving is one of the hardest tasks within computer vision, and involves huge computational costs. Obtaining acceptable real-time performance, measured in frames per second (fps), for the most advanced algorithms is nowadays a hard challenge. Taking the work in [1] as our baseline, we propose a CUDA implementation of a pedestrian detection system that includes LBP and HOG as feature descriptors and SVM and Random forest as classifiers. We introduce significant algorithmic adjustments and optimizations to adapt the problem to the NVIDIA GPU architecture. The aim is to deploy a real-time system providing reliable results.  
  Address Silicon Valley; San Francisco; USA; April 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GTC  
  Notes ADAS; 600.085; 600.082; 600.076 Approved no  
  Call Number ADAS @ adas @ CSM2016 Serial 2737  
Permanent link to this record
 

 
Author (down) Victor Campmany; Sergio Silva; Antonio Espinosa; Juan Carlos Moure; David Vazquez; Antonio Lopez edit   pdf
url  openurl
  Title GPU-based pedestrian detection for autonomous driving Type Conference Article
  Year 2016 Publication 16th International Conference on Computational Science Abbreviated Journal  
  Volume 80 Issue Pages 2377-2381  
  Keywords Pedestrian detection; Autonomous Driving; CUDA  
  Abstract We propose a real-time pedestrian detection system for the embedded Nvidia Tegra X1 GPU-CPU hybrid platform. The pipeline is composed by the following state-of-the-art algorithms: Histogram of Local Binary Patterns (LBP) and Histograms of Oriented Gradients (HOG) features extracted from the input image; Pyramidal Sliding Window technique for foreground segmentation; and Support Vector Machine (SVM) for classification. Results show a 8x speedup in the target Tegra X1 platform and a better performance/watt ratio than desktop CUDA platforms in study.  
  Address San Diego; CA; USA; June 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCS  
  Notes ADAS; 600.085; 600.082; 600.076 Approved no  
  Call Number ADAS @ adas @ CSE2016 Serial 2741  
Permanent link to this record
 

 
Author (down) Vassileios Balntas; Edgar Riba; Daniel Ponsa; Krystian Mikolajczyk edit   pdf
openurl 
  Title Learning local feature descriptors with triplets and shallow convolutional neural networks Type Conference Article
  Year 2016 Publication 27th British Machine Vision Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract It has recently been demonstrated that local feature descriptors based on convolutional neural networks (CNN) can significantly improve the matching performance. Previous work on learning such descriptors has focused on exploiting pairs of positive and negative patches to learn discriminative CNN representations. In this work, we propose to utilize triplets of training samples, together with in-triplet mining of hard negatives.
We show that our method achieves state of the art results, without the computational overhead typically associated with mining of negatives and with lower complexity of the network architecture. We compare our approach to recently introduced convolutional local feature descriptors, and demonstrate the advantages of the proposed methods in terms of performance and speed. We also examine different loss functions associated with triplets.
 
  Address York; UK; September 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference BMVC  
  Notes ADAS; 600.086 Approved no  
  Call Number Admin @ si @ BRP2016 Serial 2818  
Permanent link to this record
 

 
Author (down) Simon Jégou; Michal Drozdzal; David Vazquez; Adriana Romero; Yoshua Bengio edit   pdf
url  doi
openurl 
  Title The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation Type Conference Article
  Year 2017 Publication IEEE Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal  
  Volume Issue Pages  
  Keywords Semantic Segmentation  
  Abstract State-of-the-art approaches for semantic image segmentation are built on Convolutional Neural Networks (CNNs). The typical segmentation architecture is composed of (a) a downsampling path responsible for extracting coarse semantic features, followed by (b) an upsampling path trained to recover the input image resolution at the output of the model and, optionally, (c) a post-processing module (e.g. Conditional Random Fields) to refine the model predictions.

Recently, a new CNN architecture, Densely Connected Convolutional Networks (DenseNets), has shown excellent results on image classification tasks. The idea of DenseNets is based on the observation that if each layer is directly connected to every other layer in a feed-forward fashion then the network will be more accurate and easier to train.

In this paper, we extend DenseNets to deal with the problem of semantic segmentation. We achieve state-of-the-art results on urban scene benchmark datasets such as CamVid and Gatech, without any further post-processing module nor pretraining. Moreover, due to smart construction of the model, our approach has much less parameters than currently published best entries for these datasets.
 
  Address Honolulu; USA; July 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes MILAB; ADAS; 600.076; 600.085; 601.281 Approved no  
  Call Number ADAS @ adas @ JDV2016 Serial 2866  
Permanent link to this record
 

 
Author (down) Santi Puch; Irina Sanchez; Aura Hernandez-Sabate; Gemma Piella; Vesna Prckovska edit   pdf
url  openurl
  Title Global Planar Convolutions for Improved Context Aggregation in Brain Tumor Segmentation Type Conference Article
  Year 2018 Publication International MICCAI Brainlesion Workshop Abbreviated Journal  
  Volume 11384 Issue Pages 393-405  
  Keywords Brain tumors; 3D fully-convolutional CNN; Magnetic resonance imaging; Global planar convolution  
  Abstract In this work, we introduce the Global Planar Convolution module as a building-block for fully-convolutional networks that aggregates global information and, therefore, enhances the context perception capabilities of segmentation networks in the context of brain tumor segmentation. We implement two baseline architectures (3D UNet and a residual version of 3D UNet, ResUNet) and present a novel architecture based on these two architectures, ContextNet, that includes the proposed Global Planar Convolution module. We show that the addition of such module eliminates the need of building networks with several representation levels, which tend to be over-parametrized and to showcase slow rates of convergence. Furthermore, we provide a visual demonstration of the behavior of GPC modules via visualization of intermediate representations. We finally participate in the 2018 edition of the BraTS challenge with our best performing models, that are based on ContextNet, and report the evaluation scores on the validation and the test sets of the challenge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MICCAIW  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ PSH2018 Serial 3251  
Permanent link to this record
 

 
Author (down) Saad Minhas; Aura Hernandez-Sabate; Shoaib Ehsan; Katerine Diaz; Ales Leonardis; Antonio Lopez; Klaus McDonald Maier edit   pdf
openurl 
  Title LEE: A photorealistic Virtual Environment for Assessing Driver-Vehicle Interactions in Self-Driving Mode Type Conference Article
  Year 2016 Publication 14th European Conference on Computer Vision Workshops Abbreviated Journal  
  Volume 9915 Issue Pages 894-900  
  Keywords Simulation environment; Automated Driving; Driver-Vehicle interaction  
  Abstract Photorealistic virtual environments are crucial for developing and testing automated driving systems in a safe way during trials. As commercially available simulators are expensive and bulky, this paper presents a low-cost, extendable, and easy-to-use (LEE) virtual environment with the aim to highlight its utility for level 3 driving automation. In particular, an experiment is performed using the presented simulator to explore the influence of different variables regarding control transfer of the car after the system was driving autonomously in a highway scenario. The results show that the speed of the car at the time when the system needs to transfer the control to the human driver is critical.  
  Address Amsterdam; The Netherlands; October 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECCVW  
  Notes ADAS;IAM; 600.085; 600.076 Approved no  
  Call Number MHE2016 Serial 2865  
Permanent link to this record
 

 
Author (down) Ricardo Toledo; X. Orriols; Petia Radeva; X. Binefa; Jordi Vitria; Cristina Cañero; Juan J. Villanueva edit  openurl
  Title Eigensnakes for vessel segmentation in angiography. Type Conference Article
  Year 2000 Publication 15 th International Conference on Pattern Recognition Abbreviated Journal  
  Volume 4 Issue Pages 340-343  
  Keywords  
  Abstract  
  Address Barcelona.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes OR;MILAB;ADAS;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ TOR2000 Serial 235  
Permanent link to this record
 

 
Author (down) R. de Nijs; Sebastian Ramos; Gemma Roig; Xavier Boix; Luc Van Gool; K. Kühnlenz. edit   pdf
openurl 
  Title On-line Semantic Perception Using Uncertainty Type Conference Article
  Year 2012 Publication International Conference on Intelligent Robots and Systems Abbreviated Journal IROS  
  Volume Issue Pages 4185-4191  
  Keywords Semantic Segmentation  
  Abstract Visual perception capabilities are still highly unreliable in unconstrained settings, and solutions might not beaccurate in all regions of an image. Awareness of the uncertainty of perception is a fundamental requirement for proper high level decision making in a robotic system. Yet, the uncertainty measure is often sacrificed to account for dependencies between object/region classifiers. This is the case of Conditional Random Fields (CRFs), the success of which stems from their ability to infer the most likely world configuration, but they do not directly allow to estimate the uncertainty of the solution. In this paper, we consider the setting of assigning semantic labels to the pixels of an image sequence. Instead of using a CRF, we employ a Perturb-and-MAP Random Field, a recently introduced probabilistic model that allows performing fast approximate sampling from its probability density function. This allows to effectively compute the uncertainty of the solution, indicating the reliability of the most likely labeling in each region of the image. We report results on the CamVid dataset, a standard benchmark for semantic labeling of urban image sequences. In our experiments, we show the benefits of exploiting the uncertainty by putting more computational effort on the regions of the image that are less reliable, and use more efficient techniques for other regions, showing little decrease of performance  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IROS  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ NRR2012 Serial 2378  
Permanent link to this record
 

 
Author (down) Petia Radeva; Joan Serrat; Enric Marti edit   pdf
doi  openurl
  Title A snake for model-based segmentation Type Conference Article
  Year 1995 Publication Proc. Conf. Fifth Int Computer Vision Abbreviated Journal  
  Volume Issue Pages 816-821  
  Keywords snakes; elastic matching; model-based segmenta tion  
  Abstract Despite the promising results of numerous applications, the hitherto proposed snake techniques share some common problems: snake attraction by spurious edge points, snake degeneration (shrinking and attening), convergence and stability of the deformation process, snake initialization and local determination of the parameters of elasticity. We argue here that these problems can be solved only when all the snake aspects are considered. The snakes proposed here implement a new potential eld and external force in order to provide a deformation convergence, attraction by both near and far edges as well as snake behaviour selective according to the edge orientation. Furthermore, we conclude that in the case of model-based seg mentation, the internal force should include structural information about the expected snake shape. Experiments using this kind of snakes for segmenting bones in complex hand radiographs show a signi cant improvement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;ADAS;IAM Approved no  
  Call Number IAM @ iam @ RSM1995 Serial 1634  
Permanent link to this record
 

 
Author (down) Petia Radeva; Joan Serrat edit  openurl
  Title Rubber Snake: Implementation on Signed Distance Potential. Type Conference Article
  Year 1993 Publication Vision Conference Abbreviated Journal  
  Volume Issue Pages 187-194  
  Keywords  
  Abstract  
  Address Zurich, Switzerland.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SWISS  
  Notes ADAS;MILAB Approved no  
  Call Number ADAS @ adas @ RaS1993 Serial 170  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: