|
Muhammad Anwer Rao, Fahad Shahbaz Khan, Joost Van de Weijer and Jorma Laaksonen. 2016. Combining Holistic and Part-based Deep Representations for Computational Painting Categorization. 6th International Conference on Multimedia Retrieval.
Abstract: Automatic analysis of visual art, such as paintings, is a challenging inter-disciplinary research problem. Conventional approaches only rely on global scene characteristics by encoding holistic information for computational painting categorization.We argue that such approaches are sub-optimal and that discriminative common visual structures provide complementary information for painting classification. We present an approach that encodes both the global scene layout and discriminative latent common structures for computational painting categorization. The region of interests are automatically extracted, without any manual part labeling, by training class-specific deformable part-based models. Both holistic and region-of-interests are then described using multi-scale dense convolutional features. These features are pooled separately using Fisher vector encoding and concatenated afterwards in a single image representation. Experiments are performed on a challenging dataset with 91 different painters and 13 diverse painting styles. Our approach outperforms the standard method, which only employs the global scene characteristics. Furthermore, our method achieves state-of-the-art results outperforming a recent multi-scale deep features based approach [11] by 6.4% and 3.8% respectively on artist and style classification.
|
|
|
Gemma Rotger, Felipe Lumbreras, Francesc Moreno-Noguer and Antonio Agudo. 2018. 2D-to-3D Facial Expression Transfer. 24th International Conference on Pattern Recognition.2008–2013.
Abstract: Automatically changing the expression and physical features of a face from an input image is a topic that has been traditionally tackled in a 2D domain. In this paper, we bring this problem to 3D and propose a framework that given an
input RGB video of a human face under a neutral expression, initially computes his/her 3D shape and then performs a transfer to a new and potentially non-observed expression. For this purpose, we parameterize the rest shape –obtained from standard factorization approaches over the input video– using a triangular
mesh which is further clustered into larger macro-segments. The expression transfer problem is then posed as a direct mapping between this shape and a source shape, such as the blend shapes of an off-the-shelf 3D dataset of human facial expressions. The mapping is resolved to be geometrically consistent between 3D models by requiring points in specific regions to map on semantic
equivalent regions. We validate the approach on several synthetic and real examples of input faces that largely differ from the source shapes, yielding very realistic expression transfers even in cases with topology changes, such as a synthetic video sequence of a single-eyed cyclops.
|
|
|
Jiaolong Xu, Peng Wang, Heng Yang and Antonio Lopez. 2019. Training a Binary Weight Object Detector by Knowledge Transfer for Autonomous Driving. IEEE International Conference on Robotics and Automation.2379–2384.
Abstract: Autonomous driving has harsh requirements of small model size and energy efficiency, in order to enable the embedded system to achieve real-time on-board object detection. Recent deep convolutional neural network based object detectors have achieved state-of-the-art accuracy. However, such models are trained with numerous parameters and their high computational costs and large storage prohibit the deployment to memory and computation resource limited systems. Low-precision neural networks are popular techniques for reducing the computation requirements and memory footprint. Among them, binary weight neural network (BWN) is the extreme case which quantizes the float-point into just bit. BWNs are difficult to train and suffer from accuracy deprecation due to the extreme low-bit representation. To address this problem, we propose a knowledge transfer (KT) method to aid the training of BWN using a full-precision teacher network. We built DarkNet-and MobileNet-based binary weight YOLO-v2 detectors and conduct experiments on KITTI benchmark for car, pedestrian and cyclist detection. The experimental results show that the proposed method maintains high detection accuracy while reducing the model size of DarkNet-YOLO from 257 MB to 8.8 MB and MobileNet-YOLO from 193 MB to 7.9 MB.
|
|
|
German Ros, Sebastian Ramos, Manuel Granados, Amir Bakhtiary, David Vazquez and Antonio Lopez. 2015. Vision-based Offline-Online Perception Paradigm for Autonomous Driving. IEEE Winter Conference on Applications of Computer Vision.231–238.
Abstract: Autonomous driving is a key factor for future mobility. Properly perceiving the environment of the vehicles is essential for a safe driving, which requires computing accurate geometric and semantic information in real-time. In this paper, we challenge state-of-the-art computer vision algorithms for building a perception system for autonomous driving. An inherent drawback in the computation of visual semantics is the trade-off between accuracy and computational cost. We propose to circumvent this problem by following an offline-online strategy. During the offline stage dense 3D semantic maps are created. In the online stage the current driving area is recognized in the maps via a re-localization process, which allows to retrieve the pre-computed accurate semantics and 3D geometry in realtime. Then, detecting the dynamic obstacles we obtain a rich understanding of the current scene. We evaluate quantitatively our proposal in the KITTI dataset and discuss the related open challenges for the computer vision community.
Keywords: Autonomous Driving; Scene Understanding; SLAM; Semantic Segmentation
|
|
|
Felipe Codevilla, Antonio Lopez, Vladlen Koltun and Alexey Dosovitskiy. 2018. On Offline Evaluation of Vision-based Driving Models. 15th European Conference on Computer Vision.246–262. (LNCS.)
Abstract: Autonomous driving models should ideally be evaluated by deploying
them on a fleet of physical vehicles in the real world. Unfortunately, this approach is not practical for the vast majority of researchers. An attractive alternative is to evaluate models offline, on a pre-collected validation dataset with ground truth annotation. In this paper, we investigate the relation between various online and offline metrics for evaluation of autonomous driving models. We find that offline prediction error is not necessarily correlated with driving quality, and two models with identical prediction error can differ dramatically in their driving performance. We show that the correlation of offline evaluation with driving quality can be significantly improved by selecting an appropriate validation dataset and
suitable offline metrics.
Keywords: Autonomous driving; deep learning
|
|
|
Javad Zolfaghari Bengar and 7 others. 2019. Temporal Coherence for Active Learning in Videos. IEEE International Conference on Computer Vision Workshops.914–923.
Abstract: Autonomous driving systems require huge amounts of data to train. Manual annotation of this data is time-consuming and prohibitively expensive since it involves human resources. Therefore, active learning emerged as an alternative to ease this effort and to make data annotation more manageable. In this paper, we introduce a novel active learning approach for object detection in videos by exploiting temporal coherence. Our active learning criterion is based on the estimated number of errors in terms of false positives and false negatives. The detections obtained by the object detector are used to define the nodes of a graph and tracked forward and backward to temporally link the nodes. Minimizing an energy function defined on this graphical model provides estimates of both false positives and false negatives. Additionally, we introduce a synthetic video dataset, called SYNTHIA-AL, specially designed to evaluate active learning for video object detection in road scenes. Finally, we show that our approach outperforms active learning baselines tested on two datasets.
|
|
|
Diego Alejandro Cheda, Daniel Ponsa and Antonio Lopez. 2010. Camera Egomotion Estimation in the ADAS Context. 13th International IEEE Annual Conference on Intelligent Transportation Systems.1415–1420.
Abstract: Camera-based Advanced Driver Assistance Systems (ADAS) have concentrated many research efforts in the last decades. Proposals based on monocular cameras require the knowledge of the camera pose with respect to the environment, in order to reach an efficient and robust performance. A common assumption in such systems is considering the road as planar, and the camera pose with respect to it as approximately known. However, in real situations, the camera pose varies along time due to the vehicle movement, the road slope, and irregularities on the road surface. Thus, the changes in the camera position and orientation (i.e., the egomotion) are critical information that must be estimated at every frame to avoid poor performances. This work focuses on egomotion estimation from a monocular camera under the ADAS context. We review and compare egomotion methods with simulated and real ADAS-like sequences. Basing on the results of our experiments, we show which of the considered nonlinear and linear algorithms have the best performance in this domain.
|
|
|
Muhammad Anwer Rao, David Vazquez and Antonio Lopez. 2011. Color Contribution to Part-Based Person Detection in Different Types of Scenarios. In P. Real, D.D., H. Molina, A. Berciano, W. Kropatsch, ed. 14th International Conference on Computer Analysis of Images and Patterns. Berlin Heidelberg, Springer, 463–470.
Abstract: Camera-based person detection is of paramount interest due to its potential applications. The task is diffcult because the great variety of backgrounds (scenarios, illumination) in which persons are present, as well as their intra-class variability (pose, clothe, occlusion). In fact, the class person is one of the included in the popular PASCAL visual object classes (VOC) challenge. A breakthrough for this challenge, regarding person detection, is due to Felzenszwalb et al. These authors proposed a part-based detector that relies on histograms of oriented gradients (HOG) and latent support vector machines (LatSVM) to learn a model of the whole human body and its constitutive parts, as well as their relative position. Since the approach of Felzenszwalb et al. appeared new variants have been proposed, usually giving rise to more complex models. In this paper, we focus on an issue that has not attracted suficient interest up to now. In particular, we refer to the fact that HOG is usually computed from RGB color space, but other possibilities exist and deserve the corresponding investigation. In this paper we challenge RGB space with the opponent color space (OPP), which is inspired in the human vision system.We will compute the HOG on top of OPP, then we train and test the part-based human classifer by Felzenszwalb et al. using PASCAL VOC challenge protocols and person database. Our experiments demonstrate that OPP outperforms RGB. We also investigate possible differences among types of scenarios: indoor, urban and countryside. Interestingly, our experiments suggest that the beneficts of OPP with respect to RGB mainly come for indoor and countryside scenarios, those in which the human visual system was designed by evolution.
Keywords: Pedestrian Detection; Color
|
|
|
Patricia Marquez and 6 others. 2014. Factors Affecting Optical Flow Performance in Tagging Magnetic Resonance Imaging. 17th International Conference on Medical Image Computing and Computer Assisted Intervention. Springer International Publishing, 231–238. (LNCS.)
Abstract: Changes in cardiac deformation patterns are correlated with cardiac pathologies. Deformation can be extracted from tagging Magnetic Resonance Imaging (tMRI) using Optical Flow (OF) techniques. For applications of OF in a clinical setting it is important to assess to what extent the performance of a particular OF method is stable across dierent clinical acquisition artifacts. This paper presents a statistical validation framework, based on ANOVA, to assess the motion and appearance factors that have the largest in uence on OF accuracy drop.
In order to validate this framework, we created a database of simulated tMRI data including the most common artifacts of MRI and test three dierent OF methods, including HARP.
Keywords: Optical flow; Performance Evaluation; Synthetic Database; ANOVA; Tagging Magnetic Resonance Imaging
|
|
|
Jose Carlos Rubio, Joan Serrat and Antonio Lopez. 2012. Unsupervised co-segmentation through region matching. 25th IEEE Conference on Computer Vision and Pattern Recognition. IEEE Xplore, 749–756.
Abstract: Co-segmentation is defined as jointly partitioning multiple images depicting the same or similar object, into foreground and background. Our method consists of a multiple-scale multiple-image generative model, which jointly estimates the foreground and background appearance distributions from several images, in a non-supervised manner. In contrast to other co-segmentation methods, our approach does not require the images to have similar foregrounds and different backgrounds to function properly. Region matching is applied to exploit inter-image information by establishing correspondences between the common objects that appear in the scene. Moreover, computing many-to-many associations of regions allow further applications, like recognition of object parts across images. We report results on iCoseg, a challenging dataset that presents extreme variability in camera viewpoint, illumination and object deformations and poses. We also show that our method is robust against large intra-class variability in the MSRC database.
|
|