toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Cristhian A. Aguilera-Carrasco; F. Aguilera; Angel Sappa; C. Aguilera; Ricardo Toledo edit   pdf
doi  openurl
  Title Learning cross-spectral similarity measures with deep convolutional neural networks Type Conference Article
  Year 2016 Publication 29th IEEE Conference on Computer Vision and Pattern Recognition Worshops Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) The simultaneous use of images from different spectracan be helpful to improve the performance of many computer vision tasks. The core idea behind the usage of crossspectral approaches is to take advantage of the strengths of each spectral band providing a richer representation of a scene, which cannot be obtained with just images from one spectral band. In this work we tackle the cross-spectral image similarity problem by using Convolutional Neural Networks (CNNs). We explore three different CNN architectures to compare the similarity of cross-spectral image patches. Specifically, we train each network with images from the visible and the near-infrared spectrum, and then test the result with two public cross-spectral datasets. Experimental results show that CNN approaches outperform the current state-of-art on both cross-spectral datasets. Additionally, our experiments show that some CNN architectures are capable of generalizing between different crossspectral domains.  
  Address Las vegas; USA; June 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes ADAS; 600.086; 600.076 Approved no  
  Call Number Admin @ si @AAS2016 Serial 2809  
Permanent link to this record
 

 
Author Alejandro Gonzalez Alzate; Gabriel Villalonga; German Ros; David Vazquez; Antonio Lopez edit   pdf
doi  openurl
  Title 3D-Guided Multiscale Sliding Window for Pedestrian Detection Type Conference Article
  Year 2015 Publication Pattern Recognition and Image Analysis, Proceedings of 7th Iberian Conference , ibPRIA 2015 Abbreviated Journal  
  Volume 9117 Issue Pages 560-568  
  Keywords Pedestrian Detection  
  Abstract (down) The most relevant modules of a pedestrian detector are the candidate generation and the candidate classification. The former aims at presenting image windows to the latter so that they are classified as containing a pedestrian or not. Much attention has being paid to the classification module, while candidate generation has mainly relied on (multiscale) sliding window pyramid. However, candidate generation is critical for achieving real-time. In this paper we assume a context of autonomous driving based on stereo vision. Accordingly, we evaluate the effect of taking into account the 3D information (derived from the stereo) in order to prune the hundred of thousands windows per image generated by classical pyramidal sliding window. For our study we use a multimodal (RGB, disparity) and multi-descriptor (HOG, LBP, HOG+LBP) holistic ensemble based on linear SVM. Evaluation on data from the challenging KITTI benchmark suite shows the effectiveness of using 3D information to dramatically reduce the number of candidate windows, even improving the overall pedestrian detection accuracy.  
  Address Santiago de Compostela; España; June 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area ACDC Expedition Conference IbPRIA  
  Notes ADAS; 600.076; 600.057; 600.054 Approved no  
  Call Number ADAS @ adas @ GVR2015 Serial 2585  
Permanent link to this record
 

 
Author J.Poujol; Cristhian A. Aguilera-Carrasco; E.Danos; Boris X. Vintimilla; Ricardo Toledo; Angel Sappa edit   pdf
url  doi
isbn  openurl
  Title Visible-Thermal Fusion based Monocular Visual Odometry Type Conference Article
  Year 2015 Publication 2nd Iberian Robotics Conference ROBOT2015 Abbreviated Journal  
  Volume 417 Issue Pages 517-528  
  Keywords Monocular Visual Odometry; LWIR-RGB cross-spectral Imaging; Image Fusion.  
  Abstract (down) The manuscript evaluates the performance of a monocular visual odometry approach when images from different spectra are considered, both independently and fused. The objective behind this evaluation is to analyze if classical approaches can be improved when the given images, which are from different spectra, are fused and represented in new domains. The images in these new domains should have some of the following properties: i) more robust to noisy data; ii) less sensitive to changes (e.g., lighting); iii) more rich in descriptive information, among other. In particular in the current work two different image fusion strategies are considered. Firstly, images from the visible and thermal spectrum are fused using a Discrete Wavelet Transform (DWT) approach. Secondly, a monochrome threshold strategy is considered. The obtained
representations are evaluated under a visual odometry framework, highlighting
their advantages and disadvantages, using different urban and semi-urban scenarios. Comparisons with both monocular-visible spectrum and monocular-infrared spectrum, are also provided showing the validity of the proposed approach.
 
  Address Lisboa; Portugal; November 2015  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2194-5357 ISBN 978-3-319-27145-3 Medium  
  Area Expedition Conference ROBOT  
  Notes ADAS; 600.076; 600.086 Approved no  
  Call Number Admin @ si @ PAD2015 Serial 2663  
Permanent link to this record
 

 
Author Naveen Onkarappa; Angel Sappa edit  doi
isbn  openurl
  Title Space Variant Representations for Mobile Platform Vision Applications Type Conference Article
  Year 2011 Publication 14th International Conference on Computer Analysis of Images and Patterns Abbreviated Journal  
  Volume 6855 Issue II Pages 146-154  
  Keywords  
  Abstract (down) The log-polar space variant representation, motivated by biological vision, has been widely studied in the literature. Its data reduction and invariance properties made it useful in many vision applications. However, due to its nature, it fails in preserving features in the periphery. In the current work, as an attempt to overcome this problem, we propose a novel space-variant representation. It is evaluated and proved to be better than the log-polar representation in preserving the peripheral information, crucial for on-board mobile vision applications. The evaluation is performed by comparing log-polar and the proposed representation once they are used for estimating dense optical flow.  
  Address Seville, Spain  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor P. Real, D. Diaz, H. Molina, A. Berciano, W. Kropatsch  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-23677-8 Medium  
  Area Expedition Conference CAIP  
  Notes ADAS Approved no  
  Call Number NaS2011; ADAS @ adas @ Serial 1686  
Permanent link to this record
 

 
Author Miguel Oliveira; Angel Sappa; V. Santos edit   pdf
doi  isbn
openurl 
  Title Color Correction for Onboard Multi-camera Systems using 3D Gaussian Mixture Models Type Conference Article
  Year 2012 Publication IEEE Intelligent Vehicles Symposium Abbreviated Journal  
  Volume Issue Pages 299-303  
  Keywords  
  Abstract (down) The current paper proposes a novel color correction approach for onboard multi-camera systems. It works by segmenting the given images into several regions. A probabilistic segmentation framework, using 3D Gaussian Mixture Models, is proposed. Regions are used to compute local color correction functions, which are then combined to obtain the final corrected image. An image data set of road scenarios is used to establish a performance comparison of the proposed method with other seven well known color correction algorithms. Results show that the proposed approach is the highest scoring color correction method. Also, the proposed single step 3D color space probabilistic segmentation reduces processing time over similar approaches.  
  Address Alcalá de Henares  
  Corporate Author Thesis  
  Publisher IEEE Xplore Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1931-0587 ISBN 978-1-4673-2119-8 Medium  
  Area Expedition Conference IV  
  Notes ADAS Approved no  
  Call Number Admin @ si @ OSS2012b Serial 2021  
Permanent link to this record
 

 
Author Miguel Oliveira; Angel Sappa; V. Santos edit   pdf
doi  isbn
openurl 
  Title Color Correction using 3D Gaussian Mixture Models Type Conference Article
  Year 2012 Publication 9th International Conference on Image Analysis and Recognition Abbreviated Journal  
  Volume 7324 Issue I Pages 97-106  
  Keywords  
  Abstract (down) The current paper proposes a novel color correction approach based on a probabilistic segmentation framework by using 3D Gaussian Mixture Models. Regions are used to compute local color correction functions, which are then combined to obtain the final corrected image. The proposed approach is evaluated using both a recently published metric and two large data sets composed of seventy images. The evaluation is performed by comparing our algorithm with eight well known color correction algorithms. Results show that the proposed approach is the highest scoring color correction method. Also, the proposed single step 3D color space probabilistic segmentation reduces processing time over similar approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 10.1007/978-3-642-31295-3_12 Medium  
  Area Expedition Conference ICIAR  
  Notes ADAS Approved no  
  Call Number Admin @ si @ OSS2012a Serial 2015  
Permanent link to this record
 

 
Author Miguel Oliveira; Angel Sappa; V.Santos edit  doi
isbn  openurl
  Title Unsupervised Local Color Correction for Coarsely Registered Images Type Conference Article
  Year 2011 Publication IEEE conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 201-208  
  Keywords  
  Abstract (down) The current paper proposes a new parametric local color correction technique. Initially, several color transfer functions are computed from the output of the mean shift color segmentation algorithm. Secondly, color influence maps are calculated. Finally, the contribution of every color transfer function is merged using the weights from the color influence maps. The proposed approach is compared with both global and local color correction approaches. Results show that our method outperforms the technique ranked first in a recent performance evaluation on this topic. Moreover, the proposed approach is computed in about one tenth of the time.  
  Address Colorado Springs  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-6919 ISBN 978-1-4577-0394-2 Medium  
  Area Expedition Conference CVPR  
  Notes ADAS Approved no  
  Call Number Admin @ si @ OSS2011; ADAS @ adas @ Serial 1766  
Permanent link to this record
 

 
Author Hamed H. Aghdam; Abel Gonzalez-Garcia; Joost Van de Weijer; Antonio Lopez edit   pdf
url  doi
openurl 
  Title Active Learning for Deep Detection Neural Networks Type Conference Article
  Year 2019 Publication 18th IEEE International Conference on Computer Vision Abbreviated Journal  
  Volume Issue Pages 3672-3680  
  Keywords  
  Abstract (down) The cost of drawing object bounding boxes (ie labeling) for millions of images is prohibitively high. For instance, labeling pedestrians in a regular urban image could take 35 seconds on average. Active learning aims to reduce the cost of labeling by selecting only those images that are informative to improve the detection network accuracy. In this paper, we propose a method to perform active learning of object detectors based on convolutional neural networks. We propose a new image-level scoring process to rank unlabeled images for their automatic selection, which clearly outperforms classical scores. The proposed method can be applied to videos and sets of still images. In the former case, temporal selection rules can complement our scoring process. As a relevant use case, we extensively study the performance of our method on the task of pedestrian detection. Overall, the experiments show that the proposed method performs better than random selection.  
  Address Seul; Korea; October 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCV  
  Notes ADAS; LAMP; 600.124; 600.109; 600.141; 600.120; 600.118 Approved no  
  Call Number Admin @ si @ AGW2019 Serial 3321  
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla edit   pdf
doi  openurl
  Title Cross-Spectral Image Patch Similarity using Convolutional Neural Network Type Conference Article
  Year 2017 Publication IEEE International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) The ability to compare image regions (patches) has been the basis of many approaches to core computer vision problems, including object, texture and scene categorization. Hence, developing representations for image patches have been of interest in several works. The current work focuses on learning similarity between cross-spectral image patches with a 2 channel convolutional neural network (CNN) model. The proposed approach is an adaptation of a previous work, trying to obtain similar results than the state of the art but with a lowcost hardware. Hence, obtained results are compared with both
classical approaches, showing improvements, and a state of the art CNN based approach.
 
  Address San Sebastian; Spain; May 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECMSM  
  Notes ADAS; 600.086; 600.118 Approved no  
  Call Number Admin @ si @ SSV2017a Serial 2916  
Permanent link to this record
 

 
Author Ferran Diego; Daniel Ponsa; Joan Serrat; Antonio Lopez edit   pdf
doi  isbn
openurl 
  Title Vehicle geolocalization based on video synchronization Type Conference Article
  Year 2010 Publication 13th Annual International Conference on Intelligent Transportation Systems Abbreviated Journal  
  Volume Issue Pages 1511–1516  
  Keywords video alignment  
  Abstract (down) TC8.6
This paper proposes a novel method for estimating the geospatial localization of a vehicle. I uses as input a georeferenced video sequence recorded by a forward-facing camera attached to the windscreen. The core of the proposed method is an on-line video synchronization which finds out the corresponding frame in the georeferenced video sequence to the one recorded at each time by the camera on a second drive through the same track. Once found the corresponding frame in the georeferenced video sequence, we transfer its geospatial information of this frame. The key advantages of this method are: 1) the increase of the update rate and the geospatial accuracy with regard to a standard low-cost GPS and 2) the ability to localize a vehicle even when a GPS is not available or is not reliable enough, like in certain urban areas. Experimental results for an urban environments are presented, showing an average of relative accuracy of 1.5 meters.
 
  Address Madeira Island (Portugal)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2153-0009 ISBN 978-1-4244-7657-2 Medium  
  Area Expedition Conference ITSC  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ DPS2010 Serial 1423  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: