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Abstract— The current paper proposes a novel color correc-
tion approach for onboard multi-camera systems. It works by
segmenting the given images into several regions. A probabilistic
segmentation framework, using 3D Gaussian Mixture Models,
is proposed. Regions are used to compute local color correction
functions, which are then combined to obtain the final corrected
image. An image data set of road scenarios is used to establish
a performance comparison of the proposed method with other
seven well known color correction algorithms. Results show
that the proposed approach is the highest scoring color cor-
rection method. Also, the proposed single step 3D color space
probabilistic segmentation reduces processing time over similar
approaches.

I. INTRODUCTION

In recent years, vision based sensors have been increas-
ingly applied to autonomous vehicles and advanced driver
assistance systems. They have key advantages over some
other sensors, such as: being passive, obtaining vast amounts
of information and being a low cost technology. Actually,
the low cost and the impossibility to get a good view of the
entire road around the vehicle using a single sensor, leads
to the use of two or more of these devices. Many exam-
ples can be given, from the DARPA Challenge competitors
(www.darpa.mil/grandchallenge).

The usage of more than one camera onboard of a moving
platform poses new problems, which have not yet received
enough attention from the research community. In fact, no
assumptions can be made on key parameters, for example,
scene illumination and contrast, which are directly measured
by the vision sensor. If images from the cameras are to be
merged into a mosaic or analyzed by some feature extractor
algorithm, colors in both images should appear similar. This
problem, called the photometrical correspondence between
images, has been addressed both by the computer graphics
and the computer vision research communities.

The general problem of compensating the photometrical
disparities between two coarsely geometrically registered
images is referred to as color correction. This process is
performed through the use of one or several color transfer
functions that use an image as a reference. In other words,
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color correction is the problem of adjusting the color palette
of an image using information from the color palette of
another image. The image that is used as a reference is
referred to as the source image, while the image which is
going to be adjusted is called the target image.

Although many different algorithms have been proposed to
perform color correction, no study has been published regard-
ing the application of these algorithms to the vision sensors
onboard autonomous vehicles. There are some characteristics
in this particular application that make a specialized study
necessary: real time requirements, since the processing time
is coupled with the maximum vehicle speed; and the need
to handle a great range of illumination conditions due to sun
glare, tunnels, night or fog.

Some authors have suggested non parametric approaches
to color correction, i.e., the methods make no assumptions
about the nature of the color distribution. For instance in [1],
color correction is done through the estimation of global
and local color transfer functions. The complex estima-
tion problem is reduced to a robust 2D tensor voting in
the corresponding voting spaces. A cumulative histogram
matching technique was presented in [2], while in [3] the
entire probability density function is mapped without making
assumptions on its nature. On the other hand, model based
parametric approaches try to model the color distribution in
the images and use tools that transfer the color distribution
characteristics from one image to the other. One of the most
important works in this scope is [4]. In this paper, a simple
statistical distribution transfer methodology was proposed.
It was also in [4] that alternative color models, namely
the lαβ color-space, where proved to be more effective for
calculating the color transfer functions than the usual RGB
color-space. It is successfully employed since it minimizes
the cross channel correlation, which is present on many color
spaces. This work has been extended in [5], where tools
that permitted RGB color space to be used with similar
effectiveness where presented. Principal component analysis
where implemented by [6], and in [7] a gain compensation
algorithm and a multiband blending post processing was
proposed.

Indeed, the application of vision sensors to moving vehi-
cles, especially the use of more than one camera, causes the
images of these cameras to have different colors (Fig. 1, left).
In order to process the set of images, color miss-balances
must be compensated by means of some color correction
algorithm.

In Section 2 a new color correction technique based on 3D
Gaussian Mixture Models (3DGMM) is proposed. Results



Fig. 1. The Atlascar robotic platform with several onboard cameras (top) (http://atlas.web.ua.pt). Onboard images taken with two cameras from a typical
road scene. Source image (bottom-left-top), Target image(bottom-left-bottom); the mosaic of both which shows a clear difference in colors (bottom-right); .

are presented in Section 3, where the best ranked color
correction algorithms in a recent performance evaluation
for image stitching [8] are compared with the proposed
approach. Conclusions are presented in Section 4.

II. PROPOSED APPROACH

The approach presented in [4] assumes a Gaussian dis-
tribution of color on both the source and target images,
i.e., it uses a linear color transfer function. The Gaussian
distribution based color transfer scheme, initially proposed
in [4], can be defined as follows: let µs and µt be the mean
color of the source and target images, while σs and σt are
the standard deviations of those images. Then, the corrected
image’s color is given by the following Gaussian distribution
transfer function:

T
′
(x) = µs +

σs

σt
× (T (x)−µt), (1)

where T
′
(x) and T (x) are the target image’s original and

new single channel color, at pixel position x= [i, j], respec-
tively. Equation (1) may be used to process single channel

images (gain compensation) or color images (color correc-
tion). However, in practical situations, the color distribution
of the whole image is seldom a normal distribution. Global
modelling of the color distribution fails in practice because
it provides only a rough approximation of the color distribu-
tion. By computing for several regions, a local color transfer
function and assuming a separate Gaussian distribution for
each, the set of color transfer functions will provide a more
consistent color correction output. This was proposed in
[9], where the Reinhard’s methodology was extended to the
local scenario, namely through a color transfer scheme based
on single channel probabilistic segmentation and region
mapping using the EM algorithm.

The current paper proposes to represent color distribution
using 3DGMM for joint probabilistic segmentation of the
three color channels. Then, several color transfer functions
can be derived from the adaptation of equation (1).

A. Probabilistic Segmentation with 3DGMMs
The segmentation step is intended to cluster the image into

a set of colors. The assumption is that it is more feasible



to represent color distribution as a Gaussian distribution
in regions where only one color (or a more uniform set
of colors) exist. The segmentation is done using Matlab’s
gmdistribution toolbox. It is done by defining the same
number of Gaussian clusters NG both for the target and
source images. This is done under the reasonable assumption
that, since the images have the same view of the scene,
they both should have the same number of colors in the
overlapping regions. After the segmentation, each pixel in
the image is assigned a probability of belonging to Gaussian
k, defined as: let the symbols µk and σ k be the vector
containing the three channel mean and standard deviations
of region k of the image, while I(x) represents the three
channel color of pixel x. For a given region k, the Probability
vector Pk(x) can thus be defined as:

Pk(x) =
exp
(
− (I(x)−µk)2

2(σk)2

)
∑

NG
i=1 exp

(
− (I(x)−µk))2

2(σ i)2

) , (2)

and the final probability of pixel x belonging to cluster k, a
scalar denoted as Pk(x), is given by the average of the three
channel probabilities of Pk(x).

In [9], each channel of the image undergoes a segmenta-
tion procedure similar to this one. However, as will be shown
in Section 3, by performing a 3DGMM of all three image
channels in a joint segmentation step we are able to improve
the color correction performance and reduce processing time.

B. Color Transfer Functions

The current paper proposes to perform a probabilistic
segmentation of both the source and target images using
3DGMMs. The result of the segmentation step is that
both the target and the source images are segmented into
NG clusters, each representing a Gaussian for the inferred
mixture model. When spatial information exists, which is
the case since images are coarsely registered, the matching
is performed based on the maximum correlation of pixel
probabilities. Let m(k) be the matching function that outputs
the index of the source Gaussian for target Gaussian k:

m(k) = argmax(r(k, j)),∀ j ∈ {1,2,3, ...,NG}, (3)

where r represents the correlation between the probabilities
of target image Gaussians Pt with source image Gaussians
Ps, given by:

r(k, j) =

[W,H]

∑
x=[1,1]

(Pk
t (x )− P̄k

t )× (P j
s (x)− P̄ j

s )√√√√ [W,H]

∑
x=[1,1]

(
Pk

t (x)− P̄k
t

)2 [W,H]

∑
x=[1,1]

(
P j

s (x)− P̄ j
s

)2
,

(4)
where P̄k represents the average of probabilities for Gaussian
k, and W , H are the image’s width and height respectively.

The color correction procedure will make use of NG
color transfer functions, each one corresponding to a match
between a region in the target with a region in the source
image. The color transfer functions (ctf) are obtained by
adapting (1) to the 3D case:

ctf(k,m(k)) = µ
m(k)
s +

σ
m(k)
s

σ k
t
× (T(x)−µ

k
t ), (5)

where T is a vector that denotes the three channels of the
image.

C. Color Correction

Once the source and target images have been segmented
into NG regions and the corresponding color transfer func-
tions for each match are computed, the objective at this last
stage is to correct the color of every single pixel. Because
of the probabilistic nature of the proposed color segmenta-
tion, pixels may have non zero probability of belonging to
more than one regions. Hence, the proposed color transfer
methodology is defined as a weighted combination of all the
computed color transfer functions:

T
′
(x) =

NG

∑
k=1

Pk
t (x) ·ctf(k,m(k)), (6)

where the bold symbol T
′

denotes the three channel color of
the corrected image.

III. RESULTS

In order to test the proposed algorithm, the ATLASCAR
robotic platform (http://atlas.web.ua.pt) [11] was used to
acquire several images of typical road scenarios. The vehicle
is used for research on autonomous driving and advanced
driver assistance systems and it is equipped with several
cameras (Fig. 1(top)). Although many video streams from
the ATLASCAR were tested, the results here presented refer
to a set of 30 image pairs from two onboard cameras. In
the case of this data set, the target images are entirely
overlapped by the source images. Images from the stereo
camera where selected to be the source images, while images
from a teleobjective camera where the target images. All
image pairs where hand registered using Matlab. Figure 1
shows one of the image pairs from the data set (bottom-left)
and a mosaic composed of the two images (bottom-right).

In order to compare the results of the proposed approach
with the state of the art, seven of the nine algorithms used in a
recent performance evaluation on color correction for image
stitching applications [8] were used in the same data set. The
other two algorithms were not used since [1] takes on average
140 seconds to correct a single pair of images and, regarding
[3], it was not possible to find a public implementation to
guarantee a fair comparison.

The evaluation parameters, i.e., color similarity (CS) and
structural similarity (SS) were taken from [8] (see reference
for their meaning). For better comparison of the proposed
methodologies, the average processing time taken to correct
one image is also presented.



TABLE I
AVERAGE AND STANDARD DEVIATION OF CS AND SS SCORES FOR THE SET OF SELECTED IMAGES. IT ALSO SHOWS THE AVERAGE PROCESSING TIME

PER IMAGE. THE METHODS ARE SORTED BY AVERAGE CS SCORE. NOTE THAT THE FASTEST ALGORITHM [7] GETS THE WORST CS SCORE. THE

PROPOSED ALGORITHM OBTAINS THE HIGHEST AVERAGE CS SCORE, THE SECOND BEST ON AVERAGE SS SCORE AND IS THE FASTEST PROCESSING

OF THE TOP THREE IN CS SCORES.

CS SS Time
Name of the Approach Reference µ σ µ σ (sec)

Baseline (Non corrected Image) none 15.46 4.68 1.00 0.00 —
Gain Compensation Brown 2007 [7] 15.51 2.47 0.98 0.02 0.21

Global Color Transfer in RGB Xiao 2006 [5] 17.42 5.72 0.68 0.13 0.34
Global Color Transfer Reinhard 2001 [4] 17.56 6.23 0.70 0.13 0.22

Cumulative Histogram Mapping Fecker 2008 [2] 20.98 5.14 0.73 0.23 0.53
Principal Components Analysis Zhang 2004 [6] 22.53 4.71 0.77 0.23 0.40

Local Color Transfer Tai 2005 [9] 23.28 3.92 0.75 0.20 4.48
Brightness Transfer Function Kim 2008 [10] 24.15 4.94 0.75 0.20 5.09
3D Gaussian Mixture Models this paper 24.30 4.06 0.77 0.21 4.10

TABLE II
THE OUTPUT OF THE COMPARATIVE METHODS AND THE PROPOSED APPROACH (GMM) FOR THREE OF THE IMAGES IN THE DATA SET. THE IMAGE

PAIRS ARE SHOW ON THE TOP OF THE TABLE. BELLOW EACH IMAGE THE ALGORITHM REFERENCE, CS AND SS SCORES ARE DISPLAYED. IN THE

FIRST TWO IMAGES THE PROPOSED APPROACH OBTAINS THE BEST CS SCORE, WHILE IN THE THIRD IMAGE IT SCORES CLOSE TO THE BEST.

Image #1 Image #2 Image #3

Source Target CS=11.5 Source Target CS=13.6 Source Target CS=14.6

Alg.; CS; SS Alg.; CS; SS Alg.; CS; SS Alg.; CS; SS Alg.; CS; SS Alg.; CS; SS

[7] ; 14.0 ; 0.9 [5] ; 13.0 ; 0.9 [7] ; 15.5 ; 0.9 [5] ; 14.3 ; 0.7 [7] ; 15.8 ; 0.9 [5] ; 15.2 ; 0.8

[4] ; 13.1 ; 0.6 [2] ; 8.5 ; 0.4 [4] ; 14.3 ; 0.7 [2] ; 24.9 ; 0.8 [4] ; 15.1 ; 0.8 [2] ; 26.0 ; 0.8

[6] ; 16.5 ; 0.7 [9] ; 17.0 ; 0.5 [6] ; 21.3 ; 0.7 [9] ; 23.7 ; 0.7 [6] ; 25.4 ; 0.8 [9] ; 26.7 ; 0.7

[10] ; 16.2 ; 0.7 GMM ; 17.1 ; 0.7 [10] ; 25.4 ; 0.7 GMM ; 25.9 ; 0.7 [10] ; 27.6 ; 0.7 GMM ; 27.2 ; 0.7



Table I shows the average CS and SS scores of the seven
methods used for comparison, as well as of the approach pro-
posed in the current paper. Analyzing Table I, two different
classes of methods may be identified: fast methods [7], [5],
[4], [2], [6], which have processing times under one second
but have limited CS scores; and highly effective methods [9],
[10] (and the proposed approach), which require about 10
times more time to get the highest CS scores. Note that this
CS score corresponds to a logarithmic scale (see details in
[8]). Results show that the proposed approach has the highest
average CS scores and is the second best in average SS score.
Also, considering the second class of tested methods, the
proposed approach is the fastest one. The values presented
in Table I are consistent with the evaluation performed by
[8], where the best average CS scores were also from [9],
[10].

Table II gives some qualitative results. Here it is also
possible to verify that the proposed approach shows the
greatest similarity with the reference source image.

IV. CONCLUSIONS

This paper proposes to use a single step multi dimensional
probabilistic segmentation of the three color channels of
an image in order to perform color correction. A recent
performance evaluation on color correction, for a different
context, was used to adequately select other color correction
methods and an evaluation metric.

The joint segmentation of the three channel color reduces
processing time from similar single channel methods: 4.1
average processing time of the proposed approach versus
4.48 from [9]. The proposed approach obtained the highest
average CS scores, which makes it a technique to take into
account for devising color correction algorithms. Of course
real time color correction would not be possible, but if
obtaining the highest CS is important, a strategy where a
color palette mapping is built every four seconds could be
devised. Results show that 3DGMM may be successfully

applied to color correction in the context of multi-camera
onboard systems, since it shows good results in the evalua-
tion parameters and is faster to process than similar methods.
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