toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cristina Palmero; Javier Selva; Sorina Smeureanu; Julio C. S. Jacques Junior; Albert Clapes; Alexa Mosegui; Zejian Zhang; David Gallardo; Georgina Guilera; David Leiva; Sergio Escalera edit   pdf
doi  openurl
  Title Context-Aware Personality Inference in Dyadic Scenarios: Introducing the UDIVA Dataset Type Conference Article
  Year 2021 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume (down) Issue Pages 1-12  
  Keywords  
  Abstract This paper introduces UDIVA, a new non-acted dataset of face-to-face dyadic interactions, where interlocutors perform competitive and collaborative tasks with different behavior elicitation and cognitive workload. The dataset consists of 90.5 hours of dyadic interactions among 147 participants distributed in 188 sessions, recorded using multiple audiovisual and physiological sensors. Currently, it includes sociodemographic, self- and peer-reported personality, internal state, and relationship profiling from participants. As an initial analysis on UDIVA, we propose a
transformer-based method for self-reported personality inference in dyadic scenarios, which uses audiovisual data and different sources of context from both interlocutors to
regress a target person’s personality traits. Preliminary results from an incremental study show consistent improvements when using all available context information.
 
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ PSS2021 Serial 3532  
Permanent link to this record
 

 
Author Julio C. S. Jacques Junior; Agata Lapedriza; Cristina Palmero; Xavier Baro; Sergio Escalera edit   pdf
doi  openurl
  Title Person Perception Biases Exposed: Revisiting the First Impressions Dataset Type Conference Article
  Year 2021 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume (down) Issue Pages 13-21  
  Keywords  
  Abstract This work revisits the ChaLearn First Impressions database, annotated for personality perception using pairwise comparisons via crowdsourcing. We analyse for the first time the original pairwise annotations, and reveal existing person perception biases associated to perceived attributes like gender, ethnicity, age and face attractiveness.
We show how person perception bias can influence data labelling of a subjective task, which has received little attention from the computer vision and machine learning communities by now. We further show that the mechanism used to convert pairwise annotations to continuous values may magnify the biases if no special treatment is considered. The findings of this study are relevant for the computer vision community that is still creating new datasets on subjective tasks, and using them for practical applications, ignoring these perceptual biases.
 
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ JLP2021 Serial 3533  
Permanent link to this record
 

 
Author Soumick Chatterjee; Fatima Saad; Chompunuch Sarasaen; Suhita Ghosh; Rupali Khatun; Petia Radeva; Georg Rose; Sebastian Stober; Oliver Speck; Andreas Nürnberger edit   pdf
openurl 
  Title Exploration of Interpretability Techniques for Deep COVID-19 Classification using Chest X-ray Images Type Miscellaneous
  Year 2020 Publication Arxiv Abbreviated Journal  
  Volume (down) Issue Pages  
  Keywords  
  Abstract CoRR abs/2006.02570
The outbreak of COVID-19 has shocked the entire world with its fairly rapid spread and has challenged different sectors. One of the most effective ways to limit its spread is the early and accurate diagnosis of infected patients. Medical imaging such as X-ray and Computed Tomography (CT) combined with the potential of Artificial Intelligence (AI) plays an essential role in supporting the medical staff in the diagnosis process. Thereby, the use of five different deep learning models (ResNet18, ResNet34, InceptionV3, InceptionResNetV2, and DenseNet161) and their Ensemble have been used in this paper, to classify COVID-19, pneumoniæ and healthy subjects using Chest X-Ray. Multi-label classification was performed to predict multiple pathologies for each patient, if present. Foremost, the interpretability of each of the networks was thoroughly studied using techniques like occlusion, saliency, input X gradient, guided backpropagation, integrated gradients, and DeepLIFT. The mean Micro-F1 score of the models for COVID-19 classifications ranges from 0.66 to 0.875, and is 0.89 for the Ensemble of the network models. The qualitative results depicted the ResNets to be the most interpretable model.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ CSS2020 Serial 3534  
Permanent link to this record
 

 
Author Estefania Talavera; Andreea Glavan; Alina Matei; Petia Radeva edit   pdf
openurl 
  Title Eating Habits Discovery in Egocentric Photo-streams Type Miscellaneous
  Year 2020 Publication Arxiv Abbreviated Journal  
  Volume (down) Issue Pages  
  Keywords  
  Abstract CoRR abs/2009.07646
Eating habits are learned throughout the early stages of our lives. However, it is not easy to be aware of how our food-related routine affects our healthy living. In this work, we address the unsupervised discovery of nutritional habits from egocentric photo-streams. We build a food-related behavioural pattern discovery model, which discloses nutritional routines from the activities performed throughout the days. To do so, we rely on Dynamic-Time-Warping for the evaluation of similarity among the collected days. Within this framework, we present a simple, but robust and fast novel classification pipeline that outperforms the state-of-the-art on food-related image classification with a weighted accuracy and F-score of 70% and 63%, respectively. Later, we identify days composed of nutritional activities that do not describe the habits of the person as anomalies in the daily life of the user with the Isolation Forest method. Furthermore, we show an application for the identification of food-related scenes when the camera wearer eats in isolation. Results have shown the good performance of the proposed model and its relevance to visualize the nutritional habits of individuals.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ TGM2020 Serial 3536  
Permanent link to this record
 

 
Author Marc Masana; Xialei Liu; Bartlomiej Twardowski; Mikel Menta; Andrew Bagdanov; Joost Van de Weijer edit   pdf
doi  openurl
  Title Class-incremental learning: survey and performance evaluation Type Journal Article
  Year 2022 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume (down) Issue Pages  
  Keywords  
  Abstract For future learning systems incremental learning is desirable, because it allows for: efficient resource usage by eliminating the need to retrain from scratch at the arrival of new data; reduced memory usage by preventing or limiting the amount of data required to be stored -- also important when privacy limitations are imposed; and learning that more closely resembles human learning. The main challenge for incremental learning is catastrophic forgetting, which refers to the precipitous drop in performance on previously learned tasks after learning a new one. Incremental learning of deep neural networks has seen explosive growth in recent years. Initial work focused on task incremental learning, where a task-ID is provided at inference time. Recently we have seen a shift towards class-incremental learning where the learner must classify at inference time between all classes seen in previous tasks without recourse to a task-ID. In this paper, we provide a complete survey of existing methods for incremental learning, and in particular we perform an extensive experimental evaluation on twelve class-incremental methods. We consider several new experimental scenarios, including a comparison of class-incremental methods on multiple large-scale datasets, investigation into small and large domain shifts, and comparison on various network architectures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ MLT2022 Serial 3538  
Permanent link to this record
 

 
Author Shiqi Yang; Yaxing Wang; Joost Van de Weijer; Luis Herranz edit   pdf
openurl 
  Title Unsupervised Domain Adaptation without Source Data by Casting a BAIT Type Miscellaneous
  Year 2020 Publication Arxiv Abbreviated Journal  
  Volume (down) Issue Pages  
  Keywords  
  Abstract arXiv:2010.12427
Unsupervised domain adaptation (UDA) aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain. Existing UDA methods require access to source data during adaptation, which may not be feasible in some real-world applications. In this paper, we address the source-free unsupervised domain adaptation (SFUDA) problem, where only the source model is available during the adaptation. We propose a method named BAIT to address SFUDA. Specifically, given only the source model, with the source classifier head fixed, we introduce a new learnable classifier. When adapting to the target domain, class prototypes of the new added classifier will act as a bait. They will first approach the target features which deviate from prototypes of the source classifier due to domain shift. Then those target features are pulled towards the corresponding prototypes of the source classifier, thus achieving feature alignment with the source classifier in the absence of source data. Experimental results show that the proposed method achieves state-of-the-art performance on several benchmark datasets compared with existing UDA and SFUDA methods.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ YWW2020 Serial 3539  
Permanent link to this record
 

 
Author Shiqi Yang; Kai Wang; Luis Herranz; Joost Van de Weijer edit   pdf
openurl 
  Title Simple and effective localized attribute representations for zero-shot learning Type Miscellaneous
  Year 2020 Publication Arxiv Abbreviated Journal  
  Volume (down) Issue Pages  
  Keywords  
  Abstract arXiv:2006.05938
Zero-shot learning (ZSL) aims to discriminate images from unseen classes by exploiting relations to seen classes via their semantic descriptions. Some recent papers have shown the importance of localized features together with fine-tuning the feature extractor to obtain discriminative and transferable features. However, these methods require complex attention or part detection modules to perform explicit localization in the visual space. In contrast, in this paper we propose localizing representations in the semantic/attribute space, with a simple but effective pipeline where localization is implicit. Focusing on attribute representations, we show that our method obtains state-of-the-art performance on CUB and SUN datasets, and also achieves competitive results on AWA2 dataset, outperforming generally more complex methods with explicit localization in the visual space. Our method can be implemented easily, which can be used as a new baseline for zero shot-learning. In addition, our localized representations are highly interpretable as attribute-specific heatmaps.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ YWH2020 Serial 3542  
Permanent link to this record
 

 
Author Kai Wang; Luis Herranz; Joost Van de Weijer edit   pdf
url  doi
openurl 
  Title Continual learning in cross-modal retrieval Type Conference Article
  Year 2021 Publication 2nd CLVISION workshop Abbreviated Journal  
  Volume (down) Issue Pages 3628-3638  
  Keywords  
  Abstract Multimodal representations and continual learning are two areas closely related to human intelligence. The former considers the learning of shared representation spaces where information from different modalities can be compared and integrated (we focus on cross-modal retrieval between language and visual representations). The latter studies how to prevent forgetting a previously learned task when learning a new one. While humans excel in these two aspects, deep neural networks are still quite limited. In this paper, we propose a combination of both problems into a continual cross-modal retrieval setting, where we study how the catastrophic interference caused by new tasks impacts the embedding spaces and their cross-modal alignment required for effective retrieval. We propose a general framework that decouples the training, indexing and querying stages. We also identify and study different factors that may lead to forgetting, and propose tools to alleviate it. We found that the indexing stage pays an important role and that simply avoiding reindexing the database with updated embedding networks can lead to significant gains. We evaluated our methods in two image-text retrieval datasets, obtaining significant gains with respect to the fine tuning baseline.  
  Address Virtual; June 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes LAMP; 600.120; 600.141; 600.147; 601.379 Approved no  
  Call Number Admin @ si @ WHW2021 Serial 3566  
Permanent link to this record
 

 
Author Vincenzo Lomonaco; Lorenzo Pellegrini; Andrea Cossu; Antonio Carta; Gabriele Graffieti; Tyler L. Hayes; Matthias De Lange; Marc Masana; Jary Pomponi; Gido van de Ven; Martin Mundt; Qi She; Keiland Cooper; Jeremy Forest; Eden Belouadah; Simone Calderara; German I. Parisi; Fabio Cuzzolin; Andreas Tolias; Simone Scardapane; Luca Antiga; Subutai Amhad; Adrian Popescu; Christopher Kanan; Joost Van de Weijer; Tinne Tuytelaars; Davide Bacciu; Davide Maltoni edit   pdf
doi  openurl
  Title Avalanche: an End-to-End Library for Continual Learning Type Conference Article
  Year 2021 Publication 34th IEEE Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal  
  Volume (down) Issue Pages 3595-3605  
  Keywords  
  Abstract Learning continually from non-stationary data streams is a long-standing goal and a challenging problem in machine learning. Recently, we have witnessed a renewed and fast-growing interest in continual learning, especially within the deep learning community. However, algorithmic solutions are often difficult to re-implement, evaluate and port across different settings, where even results on standard benchmarks are hard to reproduce. In this work, we propose Avalanche, an open-source end-to-end library for continual learning research based on PyTorch. Avalanche is designed to provide a shared and collaborative codebase for fast prototyping, training, and reproducible evaluation of continual learning algorithms.  
  Address Virtual; June 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ LPC2021 Serial 3567  
Permanent link to this record
 

 
Author Mikel Menta; Adriana Romero; Joost Van de Weijer edit   pdf
openurl 
  Title Learning to adapt class-specific features across domains for semantic segmentation Type Miscellaneous
  Year 2020 Publication Arxiv Abbreviated Journal  
  Volume (down) Issue Pages  
  Keywords  
  Abstract arXiv:2001.08311
Recent advances in unsupervised domain adaptation have shown the effectiveness of adversarial training to adapt features across domains, endowing neural networks with the capability of being tested on a target domain without requiring any training annotations in this domain. The great majority of existing domain adaptation models rely on image translation networks, which often contain a huge amount of domain-specific parameters. Additionally, the feature adaptation step often happens globally, at a coarse level, hindering its applicability to tasks such as semantic segmentation, where details are of crucial importance to provide sharp results. In this thesis, we present a novel architecture, which learns to adapt features across domains by taking into account per class information. To that aim, we design a conditional pixel-wise discriminator network, whose output is conditioned on the segmentation masks. Moreover, following recent advances in image translation, we adopt the recently introduced StarGAN architecture as image translation backbone, since it is able to perform translations across multiple domains by means of a single generator network. Preliminary results on a segmentation task designed to assess the effectiveness of the proposed approach highlight the potential of the model, improving upon strong baselines and alternative designs.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ MRW2020 Serial 3545  
Permanent link to this record
 

 
Author Idoia Ruiz; Lorenzo Porzi; Samuel Rota Bulo; Peter Kontschieder; Joan Serrat edit   pdf
openurl 
  Title Weakly Supervised Multi-Object Tracking and Segmentation Type Conference Article
  Year 2021 Publication IEEE Winter Conference on Applications of Computer Vision Workshops Abbreviated Journal  
  Volume (down) Issue Pages 125-133  
  Keywords  
  Abstract We introduce the problem of weakly supervised MultiObject Tracking and Segmentation, i.e. joint weakly supervised instance segmentation and multi-object tracking, in which we do not provide any kind of mask annotation.
To address it, we design a novel synergistic training strategy by taking advantage of multi-task learning, i.e. classification and tracking tasks guide the training of the unsupervised instance segmentation. For that purpose, we extract weak foreground localization information, provided by
Grad-CAM heatmaps, to generate a partial ground truth to learn from. Additionally, RGB image level information is employed to refine the mask prediction at the edges of the
objects. We evaluate our method on KITTI MOTS, the most representative benchmark for this task, reducing the performance gap on the MOTSP metric between the fully supervised and weakly supervised approach to just 12% and 12.7 % for cars and pedestrians, respectively.
 
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACVW  
  Notes ADAS; 600.118; 600.124 Approved no  
  Call Number Admin @ si @ RPR2021 Serial 3548  
Permanent link to this record
 

 
Author Idoia Ruiz; Joan Serrat edit   pdf
url  doi
openurl 
  Title Rank-based ordinal classification Type Conference Article
  Year 2020 Publication 25th International Conference on Pattern Recognition Abbreviated Journal  
  Volume (down) Issue Pages 8069-8076  
  Keywords  
  Abstract Differently from the regular classification task, in ordinal classification there is an order in the classes. As a consequence not all classification errors matter the same: a predicted class close to the groundtruth one is better than predicting a farther away class. To account for this, most previous works employ loss functions based on the absolute difference between the predicted and groundtruth class labels. We argue that there are many cases in ordinal classification where label values are arbitrary (for instance 1. . . C, being C the number of classes) and thus such loss functions may not be the best choice. We instead propose a network architecture that produces not a single class prediction but an ordered vector, or ranking, of all the possible classes from most to least likely. This is thanks to a loss function that compares groundtruth and predicted rankings of these class labels, not the labels themselves. Another advantage of this new formulation is that we can enforce consistency in the predictions, namely, predicted rankings come from some unimodal vector of scores with mode at the groundtruth class. We compare with the state of the art ordinal classification methods, showing
that ours attains equal or better performance, as measured by common ordinal classification metrics, on three benchmark datasets. Furthermore, it is also suitable for a new task on image aesthetics assessment, i.e. most voted score prediction. Finally, we also apply it to building damage assessment from satellite images, providing an analysis of its performance depending on the degree of imbalance of the dataset.
 
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes ADAS; 600.118; 600.124 Approved no  
  Call Number Admin @ si @ RuS2020 Serial 3549  
Permanent link to this record
 

 
Author Guillem Cucurull; Pau Rodriguez; Vacit Oguz Yazici; Josep M. Gonfaus; Xavier Roca; Jordi Gonzalez edit  openurl
  Title Deep Inference of Personality Traits by Integrating Image and Word Use in Social Networks Type Miscellaneous
  Year 2018 Publication Arxiv Abbreviated Journal  
  Volume (down) Issue Pages  
  Keywords  
  Abstract arXiv:1802.06757
Social media, as a major platform for communication and information exchange, is a rich repository of the opinions and sentiments of 2.3 billion users about a vast spectrum of topics. To sense the whys of certain social user’s demands and cultural-driven interests, however, the knowledge embedded in the 1.8 billion pictures which are uploaded daily in public profiles has just started to be exploited since this process has been typically been text-based. Following this trend on visual-based social analysis, we present a novel methodology based on Deep Learning to build a combined image-and-text based personality trait model, trained with images posted together with words found highly correlated to specific personality traits. So the key contribution here is to explore whether OCEAN personality trait modeling can be addressed based on images, here called MindPics, appearing with certain tags with psychological insights. We found that there is a correlation between those posted images and their accompanying texts, which can be successfully modeled using deep neural networks for personality estimation. The experimental results are consistent with previous cyber-psychology results based on texts or images.
In addition, classification results on some traits show that some patterns emerge in the set of images corresponding to a specific text, in essence to those representing an abstract concept. These results open new avenues of research for further refining the proposed personality model under the supervision of psychology experts.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.098; 600.119 Approved no  
  Call Number Admin @ si @ CRY2018 Serial 3550  
Permanent link to this record
 

 
Author Pau Rodriguez; Jordi Gonzalez; Josep M. Gonfaus; Xavier Roca edit   pdf
openurl 
  Title Towards Visual Personality Questionnaires based on Deep Learning and Social Media Type Conference Article
  Year 2019 Publication 21st International Conference on Social Influence and Social Psychology Abbreviated Journal  
  Volume (down) Issue Pages  
  Keywords  
  Abstract  
  Address April 2019; Tokio; Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICSISP  
  Notes ISE; 600.119 Approved no  
  Call Number Admin @ si @ RGG2020 Serial 3554  
Permanent link to this record
 

 
Author Pau Riba; Andreas Fischer; Josep Llados; Alicia Fornes edit   pdf
url  openurl
  Title Learning Graph Edit Distance by Graph NeuralNetworks Type Miscellaneous
  Year 2020 Publication Arxiv Abbreviated Journal  
  Volume (down) Issue Pages  
  Keywords  
  Abstract The emergence of geometric deep learning as a novel framework to deal with graph-based representations has faded away traditional approaches in favor of completely new methodologies. In this paper, we propose a new framework able to combine the advances on deep metric learning with traditional approximations of the graph edit distance. Hence, we propose an efficient graph distance based on the novel field of geometric deep learning. Our method employs a message passing neural network to capture the graph structure, and thus, leveraging this information for its use on a distance computation. The performance of the proposed graph distance is validated on two different scenarios. On the one hand, in a graph retrieval of handwritten words~\ie~keyword spotting, showing its superior performance when compared with (approximate) graph edit distance benchmarks. On the other hand, demonstrating competitive results for graph similarity learning when compared with the current state-of-the-art on a recent benchmark dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121; 600.140; 601.302 Approved no  
  Call Number Admin @ si @ RFL2020 Serial 3555  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: