|
Arturo Fuentes, F. Javier Sanchez, Thomas Voncina, & Jorge Bernal. (2021). LAMV: Learning to Predict Where Spectators Look in Live Music Performances. In 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (Vol. 5, pp. 500–507).
Abstract: The advent of artificial intelligence has supposed an evolution on how different daily work tasks are performed. The analysis of cultural content has seen a huge boost by the development of computer-assisted methods that allows easy and transparent data access. In our case, we deal with the automation of the production of live shows, like music concerts, aiming to develop a system that can indicate the producer which camera to show based on what each of them is showing. In this context, we consider that is essential to understand where spectators look and what they are interested in so the computational method can learn from this information. The work that we present here shows the results of a first preliminary study in which we compare areas of interest defined by human beings and those indicated by an automatic system. Our system is based on the extraction of motion textures from dynamic Spatio-Temporal Volumes (STV) and then analyzing the patterns by means of texture analysis techniques. We validate our approach over several video sequences that have been labeled by 16 different experts. Our method is able to match those relevant areas identified by the experts, achieving recall scores higher than 80% when a distance of 80 pixels between method and ground truth is considered. Current performance shows promise when detecting abnormal peaks and movement trends.
|
|
|
Xim Cerda-Company, Olivier Penacchio, & Xavier Otazu. (2021). Chromatic Induction in Migraine. VISION, 37.
Abstract: The human visual system is not a colorimeter. The perceived colour of a region does not only depend on its colour spectrum, but also on the colour spectra and geometric arrangement of neighbouring regions, a phenomenon called chromatic induction. Chromatic induction is thought to be driven by lateral interactions: the activity of a central neuron is modified by stimuli outside its classical receptive field through excitatory–inhibitory mechanisms. As there is growing evidence of an excitation/inhibition imbalance in migraine, we compared chromatic induction in migraine and control groups. As hypothesised, we found a difference in the strength of induction between the two groups, with stronger induction effects in migraine. On the other hand, given the increased prevalence of visual phenomena in migraine with aura, we also hypothesised that the difference between migraine and control would be more important in migraine with aura than in migraine without aura. Our experiments did not support this hypothesis. Taken together, our results suggest a link between excitation/inhibition imbalance and increased induction effects.
Keywords: migraine; vision; colour; colour perception; chromatic induction; psychophysics
|
|
|
Giovanni Maria Farinella, Petia Radeva, Jose Braz, & Kadi Bouatouch. (2021). Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications – (Volume 5) (Vol. 5).
Abstract: This book contains the proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021) which was organized and sponsored by the Institute for Systems and Technologies of Information, Control and Communication (INSTICC), endorsed by the International Association for Pattern Recognition (IAPR), and in cooperation with the ACM Special Interest Group on Graphics and Interactive Techniques (SIGGRAPH), the European Association for Computer Graphics (EUROGRAPHICS), the EUROGRAPHICS Portuguese Chapter, the VRVis Center for Virtual Reality and Visualization Forschungs-GmbH, the French Association for Computer Graphics (AFIG), and the Society for Imaging Science and Technology (IS&T). The proceedings here published demonstrate new and innovative solutions and highlight technical problems in each field that are challenging and worthy of being disseminated to the interested research audiences. VISIGRAPP 2021 was organized to promote a discussion forum about the conference’s research topics between researchers, developers, manufacturers and end-users, and to establish guidelines in the development of more advanced solutions. This year VISIGRAPP was, exceptionally, held as a web-based event, due to the COVID-19 pandemic, from 8 – 10 February. We received a high number of paper submissions for this edition of VISIGRAPP, 371 in total, with contributions from 52 countries. This attests to the success and global dimension of VISIGRAPP. To evaluate each submission, we used a hierarchical process of double-blind evaluation where each paper was reviewed by two to six experts from the International Program Committee (IPC). The IPC selected for oral presentation and for publication as full papers 12 papers from GRAPP, 8 from HUCAPP, 11 papers from IVAPP, and 56 papers from VISAPP, which led to a result for the full-paper acceptance ratio of 24% and a high-quality program. Apart from the above full papers, the conference program also features 118 short papers and 67 poster presentations. We hope that these conference proceedings, which are submitted for indexation by Thomson Reuters Conference Proceedings Citation Index, SCOPUS, DBLP, Semantic Scholar, Google Scholar, EI and Microsoft Academic, will help the Computer Vision, Imaging, Visualization, Computer Graphics and Human-Computer Interaction communities to find interesting research work. Moreover, we are proud to inform that the program also includes three plenary keynote lectures, given by internationally distinguished researchers, namely Federico Tombari (Google and Technical University of Munich, Germany), Dieter Schmalstieg (Graz University of Technology, Austria) and Nathalie Henry Riche (Microsoft Research, United States), thus contributing to increase the overall quality of the conference and to provide a deeper understanding of the conference’s interest fields. Furthermore, a short list of the presented papers will be selected to be extended into a forthcoming book of VISIGRAPP Selected Papers to be published by Springer during 2021 in the CCIS series. Moreover, a short list of presented papers will be selected for publication of extended and revised versions in a special issue of the Springer Nature Computer Science journal. All papers presented at this conference will be available at the SCITEPRESS Digital Library. Three awards are delivered at the closing session, to recognize the best conference paper, the best student paper and the best poster for each of the four conferences. There is also an award for best industrial paper to be delivered at the closing session for VISAPP. We would like to express our thanks, first of all, to the authors of the technical papers, whose work and dedication made it possible to put together a program that we believe to be very exciting and of high technical quality. Next, we would like to thank the Area Chairs, all the members of the program committee and auxiliary reviewers, who helped us with their expertise and time. We would also like to thank the invited speakers for their invaluable contribution and for sharing their vision in their talks. Finally, we gratefully acknowledge the professional support of the INSTICC team for all organizational processes, especially given the need to introduce online streaming, forum management, direct messaging facilitation and other web-based activities in order to make it possible for VISIGRAPP 2021 authors to present their work and share ideas with colleagues in spite of the logistic difficulties caused by the current pandemic situation. We wish you all an exciting conference. We hope to meet you again for the next edition of VISIGRAPP, details of which are available at http://www. visigrapp.org.
|
|
|
Jorge Charco, Angel Sappa, & Boris X. Vintimilla. (2022). Human Pose Estimation through a Novel Multi-view Scheme. In 17th International Conference on Computer Vision Theory and Applications (VISAPP 2022) (Vol. 5, pp. 855–862).
Abstract: This paper presents a multi-view scheme to tackle the challenging problem of the self-occlusion in human pose estimation problem. The proposed approach first obtains the human body joints of a set of images, which are captured from different views at the same time. Then, it enhances the obtained joints by using a
multi-view scheme. Basically, the joints from a given view are used to enhance poorly estimated joints from another view, especially intended to tackle the self occlusions cases. A network architecture initially proposed for the monocular case is adapted to be used in the proposed multi-view scheme. Experimental results and
comparisons with the state-of-the-art approaches on Human3.6m dataset are presented showing improvements in the accuracy of body joints estimations.
Keywords: Multi-view Scheme; Human Pose Estimation; Relative Camera Pose; Monocular Approach
|
|
|
Bhalaji Nagarajan, Ricardo Marques, Marcos Mejia, & Petia Radeva. (2022). Class-conditional Importance Weighting for Deep Learning with Noisy Labels. In 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (Vol. 5, pp. 679–686).
Abstract: Large-scale accurate labels are very important to the Deep Neural Networks to train them and assure high performance. However, it is very expensive to create a clean dataset since usually it relies on human interaction. To this purpose, the labelling process is made cheap with a trade-off of having noisy labels. Learning with Noisy Labels is an active area of research being at the same time very challenging. The recent advances in Self-supervised learning and robust loss functions have helped in advancing noisy label research. In this paper, we propose a loss correction method that relies on dynamic weights computed based on the model training. We extend the existing Contrast to Divide algorithm coupled with DivideMix using a new class-conditional weighted scheme. We validate the method using the standard noise experiments and achieved encouraging results.
Keywords: Noisy Labeling; Loss Correction; Class-conditional Importance Weighting; Learning with Noisy Labels
|
|
|
Enric Marti. (2008). Aplicació de la metodología d’Aprenentatge basat en Proyectes en l’assignatura de Gràfics per Computador d’enginyeria Informàtica. Balanç de Quatre anys d’experiència (Vol. 6).
|
|
|
Marçal Rusiñol, R.Roset, Josep Llados, & C.Montaner. (2011). Automatic Index Generation of Digitized Map Series by Coordinate Extraction and Interpretation. ePER - e-Perimetron, 219–229.
Abstract: By means of computer vision algorithms scanned images of maps are processed in order to extract relevant geographic information from printed coordinate pairs. The meaningful information is then transformed into georeferencing information for each single map sheet, and the complete set is compiled to produce a graphical index sheet for the map series along with relevant metadata. The whole process is fully automated and trained to attain maximum effectivity and throughput.
|
|
|
Mario Rojas, David Masip, A. Todorov, & Jordi Vitria. (2011). Automatic Prediction of Facial Trait Judgments: Appearance vs. Structural Models. Plos - PloS one, 6(8), e23323.
Abstract: JCR Impact Factor 2010: 4.411
Evaluating other individuals with respect to personality characteristics plays a crucial role in human relations and it is the focus of attention for research in diverse fields such as psychology and interactive computer systems. In psychology, face perception has been recognized as a key component of this evaluation system. Multiple studies suggest that observers use face information to infer personality characteristics. Interactive computer systems are trying to take advantage of these findings and apply them to increase the natural aspect of interaction and to improve the performance of interactive computer systems. Here, we experimentally test whether the automatic prediction of facial trait judgments (e.g. dominance) can be made by using the full appearance information of the face and whether a reduced representation of its structure is sufficient. We evaluate two separate approaches: a holistic representation model using the facial appearance information and a structural model constructed from the relations among facial salient points. State of the art machine learning methods are applied to a) derive a facial trait judgment model from training data and b) predict a facial trait value for any face. Furthermore, we address the issue of whether there are specific structural relations among facial points that predict perception of facial traits. Experimental results over a set of labeled data (9 different trait evaluations) and classification rules (4 rules) suggest that a) prediction of perception of facial traits is learnable by both holistic and structural approaches; b) the most reliable prediction of facial trait judgments is obtained by certain type of holistic descriptions of the face appearance; and c) for some traits such as attractiveness and extroversion, there are relationships between specific structural features and social perceptions
|
|
|
Michael Holte, Bhaskar Chakraborty, Jordi Gonzalez, & Thomas B. Moeslund. (2012). A Local 3D Motion Descriptor for Multi-View Human Action Recognition from 4D Spatio-Temporal Interest Points. J-STSP - IEEE Journal of Selected Topics in Signal Processing, 6(5), 553–565.
Abstract: In this paper, we address the problem of human action recognition in reconstructed 3-D data acquired by multi-camera systems. We contribute to this field by introducing a novel 3-D action recognition approach based on detection of 4-D (3-D space $+$ time) spatio-temporal interest points (STIPs) and local description of 3-D motion features. STIPs are detected in multi-view images and extended to 4-D using 3-D reconstructions of the actors and pixel-to-vertex correspondences of the multi-camera setup. Local 3-D motion descriptors, histogram of optical 3-D flow (HOF3D), are extracted from estimated 3-D optical flow in the neighborhood of each 4-D STIP and made view-invariant. The local HOF3D descriptors are divided using 3-D spatial pyramids to capture and improve the discrimination between arm- and leg-based actions. Based on these pyramids of HOF3D descriptors we build a bag-of-words (BoW) vocabulary of human actions, which is compressed and classified using agglomerative information bottleneck (AIB) and support vector machines (SVMs), respectively. Experiments on the publicly available i3DPost and IXMAS datasets show promising state-of-the-art results and validate the performance and view-invariance of the approach.
|
|
|
Ariel Amato, Ivan Huerta, Mikhail Mozerov, Xavier Roca, & Jordi Gonzalez. (2014). Moving Cast Shadows Detection Methods for Video Surveillance Applications. In Augmented Vision and Reality (Vol. 6, pp. 23–47). Springer Berlin Heidelberg.
Abstract: Moving cast shadows are a major concern in today’s performance from broad range of many vision-based surveillance applications because they highly difficult the object classification task. Several shadow detection methods have been reported in the literature during the last years. They are mainly divided into two domains. One usually works with static images, whereas the second one uses image sequences, namely video content. In spite of the fact that both cases can be analogously analyzed, there is a difference in the application field. The first case, shadow detection methods can be exploited in order to obtain additional geometric and semantic cues about shape and position of its casting object (‘shape from shadows’) as well as the localization of the light source. While in the second one, the main purpose is usually change detection, scene matching or surveillance (usually in a background subtraction context). Shadows can in fact modify in a negative way the shape and color of the target object and therefore affect the performance of scene analysis and interpretation in many applications. This chapter wills mainly reviews shadow detection methods as well as their taxonomies related with the second case, thus aiming at those shadows which are associated with moving objects (moving shadows).
|
|
|
Fernando Barrera, Felipe Lumbreras, & Angel Sappa. (2012). Multimodal Stereo Vision System: 3D Data Extraction and Algorithm Evaluation. J-STSP - IEEE Journal of Selected Topics in Signal Processing, 6(5), 437–446.
Abstract: This paper proposes an imaging system for computing sparse depth maps from multispectral images. A special stereo head consisting of an infrared and a color camera defines the proposed multimodal acquisition system. The cameras are rigidly attached so that their image planes are parallel. Details about the calibration and image rectification procedure are provided. Sparse disparity maps are obtained by the combined use of mutual information enriched with gradient information. The proposed approach is evaluated using a Receiver Operating Characteristics curve. Furthermore, a multispectral dataset, color and infrared images, together with their corresponding ground truth disparity maps, is generated and used as a test bed. Experimental results in real outdoor scenarios are provided showing its viability and that the proposed approach is not restricted to a specific domain.
|
|
|
Olivier Penacchio, Laura Dempere-Marco, & Xavier Otazu. (2012). A Neurodynamical Model Of Brightness Induction In V1 Following Static And Dynamic Contextual Influences. In 8th Federation of European Neurosciences (Vol. 6, pp. 63–64).
Abstract: Brightness induction is the modulation of the perceived intensity of an area by the luminance of surrounding areas. Although striate cortex is traditionally regarded as an area mostly responsive to ensory (i.e. retinal) information,
neurophysiological evidence suggests that perceived brightness information mightbe explicitly represented in V1.
Such evidence has been observed both in anesthetised cats where neuronal response modulations have been found to follow luminance changes outside the receptive felds and in human fMRI measurements. In this work, possible neural mechanisms that ofer a plausible explanation for such phenomenon are investigated. To this end, we consider the model proposed by Z.Li (Li, Network:Comput. Neural Syst., 10 (1999)) which is based on neurophysiological evidence and focuses on the part of V1 responsible for contextual infuences, i.e. layer 2-3 pyramidal cells, interneurons, and horizontal intracortical connections. This model has reproduced other phenomena such as contour detection and preattentive segmentation, which share with brightness induction the relevant efect of contextual infuences. We have extended the original model such that the input to the network is obtained from a complete multiscale and multiorientation wavelet decomposition, thereby allowing the recovery of an image refecting the perceived intensity. The proposed model successfully accounts for well known psychophysical efects for static contexts (among them: the White's and modifed White's efects, the Todorovic, Chevreul, achromatic ring patterns, and grating induction efects) and also for brigthness induction in dynamic contexts defned by modulating the luminance of surrounding areas (e.g. the brightness of a static central area is perceived to vary in antiphase to the sinusoidal luminance changes of its surroundings). This work thus suggests that intra-cortical interactions in V1 could partially explain perceptual brightness induction efects and reveals how a common general architecture may account for several different fundamental processes emerging early in the visual processing pathway.
|
|
|
Antonio Clavelli, Dimosthenis Karatzas, Josep Llados, Mario Ferraro, & Giuseppe Boccignone. (2014). Modelling task-dependent eye guidance to objects in pictures. CoCom - Cognitive Computation, 6(3), 558–584.
Abstract: 5Y Impact Factor: 1.14 / 3rd (Computer Science, Artificial Intelligence)
We introduce a model of attentional eye guidance based on the rationale that the deployment of gaze is to be considered in the context of a general action-perception loop relying on two strictly intertwined processes: sensory processing, depending on current gaze position, identifies sources of information that are most valuable under the given task; motor processing links such information with the oculomotor act by sampling the next gaze position and thus performing the gaze shift. In such a framework, the choice of where to look next is task-dependent and oriented to classes of objects embedded within pictures of complex scenes. The dependence on task is taken into account by exploiting the value and the payoff of gazing at certain image patches or proto-objects that provide a sparse representation of the scene objects. The different levels of the action-perception loop are represented in probabilistic form and eventually give rise to a stochastic process that generates the gaze sequence. This way the model also accounts for statistical properties of gaze shifts such as individual scan path variability. Results of the simulations are compared either with experimental data derived from publicly available datasets and from our own experiments.
Keywords: Visual attention; Gaze guidance; Value; Payoff; Stochastic fixation prediction
|
|
|
Katerine Diaz, Jesus Martinez del Rincon, Aura Hernandez-Sabate, & Debora Gil. (2018). Continuous head pose estimation using manifold subspace embedding and multivariate regression. ACCESS - IEEE Access, 6, 18325–18334.
Abstract: In this paper, a continuous head pose estimation system is proposed to estimate yaw and pitch head angles from raw facial images. Our approach is based on manifold learningbased methods, due to their promising generalization properties shown for face modelling from images. The method combines histograms of oriented gradients, generalized discriminative common vectors and continuous local regression to achieve successful performance. Our proposal was tested on multiple standard face datasets, as well as in a realistic scenario. Results show a considerable performance improvement and a higher consistence of our model in comparison with other state-of-art methods, with angular errors varying between 9 and 17 degrees.
Keywords: Head Pose estimation; HOG features; Generalized Discriminative Common Vectors; B-splines; Multiple linear regression
|
|
|
Jianzhy Guo, Zhen Lei, Jun Wan, Egils Avots, Noushin Hajarolasvadi, Boris Knyazev, et al. (2018). Dominant and Complementary Emotion Recognition from Still Images of Faces. ACCESS - IEEE Access, 6, 26391–26403.
Abstract: Emotion recognition has a key role in affective computing. Recently, fine-grained emotion analysis, such as compound facial expression of emotions, has attracted high interest of researchers working on affective computing. A compound facial emotion includes dominant and complementary emotions (e.g., happily-disgusted and sadly-fearful), which is more detailed than the seven classical facial emotions (e.g., happy, disgust, and so on). Current studies on compound emotions are limited to use data sets with limited number of categories and unbalanced data distributions, with labels obtained automatically by machine learning-based algorithms which could lead to inaccuracies. To address these problems, we released the iCV-MEFED data set, which includes 50 classes of compound emotions and labels assessed by psychologists. The task is challenging due to high similarities of compound facial emotions from different categories. In addition, we have organized a challenge based on the proposed iCV-MEFED data set, held at FG workshop 2017. In this paper, we analyze the top three winner methods and perform further detailed experiments on the proposed data set. Experiments indicate that pairs of compound emotion (e.g., surprisingly-happy vs happily-surprised) are more difficult to be recognized if compared with the seven basic emotions. However, we hope the proposed data set can help to pave the way for further research on compound facial emotion recognition.
|
|