toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hugo Bertiche; Meysam Madadi; Sergio Escalera edit   pdf
url  doi
openurl 
  Title Deep Parametric Surfaces for 3D Outfit Reconstruction from Single View Image Type (down) Conference Article
  Year 2021 Publication 16th IEEE International Conference on Automatic Face and Gesture Recognition Abbreviated Journal  
  Volume Issue Pages 1-8  
  Keywords  
  Abstract We present a methodology to retrieve analytical surfaces parametrized as a neural network. Previous works on 3D reconstruction yield point clouds, voxelized objects or meshes. Instead, our approach yields 2-manifolds in the euclidean space through deep learning. To this end, we implement a novel formulation for fully connected layers as parametrized manifolds that allows continuous predictions with differential geometry. Based on this property we propose a novel smoothness loss. Results on CLOTH3D++ dataset show the possibility to infer different topologies and the benefits of the smoothness term based on differential geometry.  
  Address Virtual; December 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FG  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ BME2021 Serial 3640  
Permanent link to this record
 

 
Author Hugo Bertiche; Meysam Madadi; Sergio Escalera edit   pdf
openurl 
  Title PBNS: Physically Based Neural Simulation for Unsupervised Garment Pose Space Deformation Type (down) Conference Article
  Year 2021 Publication 14th ACM Siggraph Conference and exhibition on Computer Graphics and Interactive Techniques in Asia Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract We present a methodology to automatically obtain Pose Space Deformation (PSD) basis for rigged garments through deep learning. Classical approaches rely on Physically Based Simulations (PBS) to animate clothes. These are general solutions that, given a sufficiently fine-grained discretization of space and time, can achieve highly realistic results. However, they are computationally expensive and any scene modification prompts the need of re-simulation. Linear Blend Skinning (LBS) with PSD offers a lightweight alternative to PBS, though, it needs huge volumes of data to learn proper PSD. We propose using deep learning, formulated as an implicit PBS, to unsupervisedly learn realistic cloth Pose Space Deformations in a constrained scenario: dressed humans. Furthermore, we show it is possible to train these models in an amount of time comparable to a PBS of a few sequences. To the best of our knowledge, we are the first to propose a neural simulator for cloth.
While deep-based approaches in the domain are becoming a trend, these are data-hungry models. Moreover, authors often propose complex formulations to better learn wrinkles from PBS data. Supervised learning leads to physically inconsistent predictions that require collision solving to be used. Also, dependency on PBS data limits the scalability of these solutions, while their formulation hinders its applicability and compatibility. By proposing an unsupervised methodology to learn PSD for LBS models (3D animation standard), we overcome both of these drawbacks. Results obtained show cloth-consistency in the animated garments and meaningful pose-dependant folds and wrinkles. Our solution is extremely efficient, handles multiple layers of cloth, allows unsupervised outfit resizing and can be easily applied to any custom 3D avatar.
 
  Address Virtual; December 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SIGGRAPH  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ BME2021b Serial 3641  
Permanent link to this record
 

 
Author Javier M. Olaso; Alain Vazquez; Leila Ben Letaifa; Mikel de Velasco; Aymen Mtibaa; Mohamed Amine Hmani; Dijana Petrovska-Delacretaz; Gerard Chollet; Cesar Montenegro; Asier Lopez-Zorrilla; Raquel Justo; Roberto Santana; Jofre Tenorio-Laranga; Eduardo Gonzalez-Fraile; Begoña Fernandez-Ruanova; Gennaro Cordasco; Anna Esposito; Kristin Beck Gjellesvik; Anna Torp Johansen; Maria Stylianou Kornes; Colin Pickard; Cornelius Glackin; Gary Cahalane; Pau Buch; Cristina Palmero; Sergio Escalera; Olga Gordeeva; Olivier Deroo; Anaïs Fernandez; Daria Kyslitska; Jose Antonio Lozano; Maria Ines Torres; Stephan Schlogl edit  url
openurl 
  Title The EMPATHIC Virtual Coach: a demo Type (down) Conference Article
  Year 2021 Publication 23rd ACM International Conference on Multimodal Interaction Abbreviated Journal  
  Volume Issue Pages 848-851  
  Keywords  
  Abstract The main objective of the EMPATHIC project has been the design and development of a virtual coach to engage the healthy-senior user and to enhance well-being through awareness of personal status. The EMPATHIC approach addresses this objective through multimodal interactions supported by the GROW coaching model. The paper summarizes the main components of the EMPATHIC Virtual Coach (EMPATHIC-VC) and introduces a demonstration of the coaching sessions in selected scenarios.  
  Address Virtual; October 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICMI  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ OVB2021 Serial 3644  
Permanent link to this record
 

 
Author Reza Azad; Afshin Bozorgpour; Maryam Asadi-Aghbolaghi; Dorit Merhof; Sergio Escalera edit   pdf
openurl 
  Title Deep Frequency Re-Calibration U-Net for Medical Image Segmentation Type (down) Conference Article
  Year 2021 Publication IEEE/CVF International Conference on Computer Vision Workshops Abbreviated Journal  
  Volume Issue Pages 3274-3283  
  Keywords  
  Abstract We present a novel solution to the garment animation problem through deep learning. Our contribution allows animating any template outfit with arbitrary topology and geometric complexity. Recent works develop models for garment edition, resizing and animation at the same time by leveraging the support body model (encoding garments as body homotopies). This leads to complex engineering solutions that suffer from scalability, applicability and compatibility. By limiting our scope to garment animation only, we are able to propose a simple model that can animate any outfit, independently of its topology, vertex order or connectivity. Our proposed architecture maps outfits to animated 3D models into the standard format for 3D animation (blend weights and blend shapes matrices), automatically providing of compatibility with any graphics engine. We also propose a methodology to complement supervised learning with an unsupervised physically based learning that implicitly solves collisions and enhances cloth quality.  
  Address VIRTUAL; October 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ ABA2021 Serial 3645  
Permanent link to this record
 

 
Author Ajian Liu; Chenxu Zhao; Zitong Yu; Anyang Su; Xing Liu; Zijian Kong; Jun Wan; Sergio Escalera; Hugo Jair Escalante; Zhen Lei; Guodong Guo edit   pdf
openurl 
  Title 3D High-Fidelity Mask Face Presentation Attack Detection Challenge Type (down) Conference Article
  Year 2021 Publication IEEE/CVF International Conference on Computer Vision Workshops Abbreviated Journal  
  Volume Issue Pages 814-823  
  Keywords  
  Abstract The threat of 3D mask to face recognition systems is increasing serious, and has been widely concerned by researchers. To facilitate the study of the algorithms, a large-scale High-Fidelity Mask dataset, namely CASIA-SURF HiFiMask (briefly HiFiMask) has been collected. Specifically, it consists of total amount of 54,600 videos which are recorded from 75 subjects with 225 realistic masks under 7 new kinds of sensors. Based on this dataset and Protocol 3 which evaluates both the discrimination and generalization ability of the algorithm under the open set scenarios, we organized a 3D High-Fidelity Mask Face Presentation Attack Detection Challenge to boost the research of 3D mask based attack detection. It attracted more than 200 teams for the development phase with a total of 18 teams qualifying for the final round. All the results were verified and re-ran by the organizing team, and the results were used for the final ranking. This paper presents an overview of the challenge, including the introduction of the dataset used, the definition of the protocol, the calculation of the evaluation criteria, and the summary and publication of the competition results. Finally, we focus on introducing and analyzing the top ranked algorithms, the conclusion summary, and the research ideas for mask attack detection provided by this competition.  
  Address Virtual; October 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ LZY2021 Serial 3646  
Permanent link to this record
 

 
Author Claudia Greco; Carmela Buono; Pau Buch-Cardona; Gennaro Cordasco; Sergio Escalera; Anna Esposito; Anais Fernandez; Daria Kyslitska; Maria Stylianou Kornes; Cristina Palmero; Jofre Tenorio Laranga; Anna Torp Johansen; Maria Ines Torres edit   pdf
doi  openurl
  Title Emotional Features of Interactions With Empathic Agents Type (down) Conference Article
  Year 2021 Publication IEEE/CVF International Conference on Computer Vision Workshops Abbreviated Journal  
  Volume Issue Pages 2168-2176  
  Keywords  
  Abstract The current study is part of the EMPATHIC project, whose aim is to develop an Empathic Virtual Coach (VC) capable of promoting healthy and independent aging. To this end, the VC needs to be capable of perceiving the emotional states of users and adjusting its behaviour during the interactions according to what the users are experiencing in terms of emotions and comfort. Thus, the present work focuses on some sessions where elderly users of three different countries interact with a simulated system. Audio and video information extracted from these sessions were examined by external observers to assess participants' emotional experience with the EMPATHIC-VC in terms of categorical and dimensional assessment of emotions. Analyses were conducted on the emotional labels assigned by the external observers while participants were engaged in two different scenarios: a generic one, where the interaction was carried out with no intention to discuss a specific topic, and a nutrition one, aimed to accomplish a conversation on users' nutritional habits. Results of analyses performed on both audio and video data revealed that the EMPATHIC coach did not elicit negative feelings in the users. Indeed, users from all countries have shown relaxed and positive behavior when interacting with the simulated VC during both scenarios. Overall, the EMPATHIC-VC was capable to offer an enjoyable experience without eliciting negative feelings in the users. This supports the hypothesis that an Empathic Virtual Coach capable of considering users' expectations and emotional states could support elderly people in daily life activities and help them to remain independent.  
  Address VIRTUAL; October 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ GBB2021 Serial 3647  
Permanent link to this record
 

 
Author David Curto; Albert Clapes; Javier Selva; Sorina Smeureanu; Julio C. S. Jacques Junior; David Gallardo-Pujol; Georgina Guilera; David Leiva; Thomas B. Moeslund; Sergio Escalera; Cristina Palmero edit   pdf
doi  openurl
  Title Dyadformer: A Multi-Modal Transformer for Long-Range Modeling of Dyadic Interactions Type (down) Conference Article
  Year 2021 Publication IEEE/CVF International Conference on Computer Vision Workshops Abbreviated Journal  
  Volume Issue Pages 2177-2188  
  Keywords  
  Abstract Personality computing has become an emerging topic in computer vision, due to the wide range of applications it can be used for. However, most works on the topic have focused on analyzing the individual, even when applied to interaction scenarios, and for short periods of time. To address these limitations, we present the Dyadformer, a novel multi-modal multi-subject Transformer architecture to model individual and interpersonal features in dyadic interactions using variable time windows, thus allowing the capture of long-term interdependencies. Our proposed cross-subject layer allows the network to explicitly model interactions among subjects through attentional operations. This proof-of-concept approach shows how multi-modality and joint modeling of both interactants for longer periods of time helps to predict individual attributes. With Dyadformer, we improve state-of-the-art self-reported personality inference results on individual subjects on the UDIVA v0.5 dataset.  
  Address Virtual; October 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ CCS2021 Serial 3648  
Permanent link to this record
 

 
Author Neelu Madan; Arya Farkhondeh; Kamal Nasrollahi; Sergio Escalera; Thomas B. Moeslund edit   pdf
openurl 
  Title Temporal Cues From Socially Unacceptable Trajectories for Anomaly Detection Type (down) Conference Article
  Year 2021 Publication IEEE/CVF International Conference on Computer Vision Workshops Abbreviated Journal  
  Volume Issue Pages 2150-2158  
  Keywords  
  Abstract State-of-the-Art (SoTA) deep learning-based approaches to detect anomalies in surveillance videos utilize limited temporal information, including basic information from motion, e.g., optical flow computed between consecutive frames. In this paper, we compliment the SoTA methods by including long-range dependencies from trajectories for anomaly detection. To achieve that, we first created trajectories by running a tracker on two SoTA datasets, namely Avenue and Shanghai-Tech. We propose a prediction-based anomaly detection method using trajectories based on Social GANs, also called in this paper as temporal-based anomaly detection. Then, we hypothesize that late fusion of the result of this temporal-based anomaly detection system with spatial-based anomaly detection systems produces SoTA results. We verify this hypothesis on two spatial-based anomaly detection systems. We show that both cases produce results better than baseline spatial-based systems, indicating the usefulness of the temporal information coming from the trajectories for anomaly detection. We observe that the proposed approach depicts the maximum improvement in micro-level Area-Under-the-Curve (AUC) by 4.1% on CUHK Avenue and 3.4% on Shanghai-Tech over one of the baseline method. We also show a high performance on cross-data evaluation, where we learn the weights to combine spatial and temporal information on Shanghai-Tech and perform evaluation on CUHK Avenue and vice-versa.  
  Address Virtual; October 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ MFN2021 Serial 3649  
Permanent link to this record
 

 
Author Meysam Madadi; Hugo Bertiche; Wafa Bouzouita; Isabelle Guyon; Sergio Escalera edit   pdf
url  openurl
  Title Learning Cloth Dynamics: 3D+Texture Garment Reconstruction Benchmark Type (down) Conference Article
  Year 2021 Publication Proceedings of Machine Learning Research Abbreviated Journal  
  Volume 133 Issue Pages 57-76  
  Keywords  
  Abstract Human avatars are important targets in many computer applications. Accurately tracking, capturing, reconstructing and animating the human body, face and garments in 3D are critical for human-computer interaction, gaming, special effects and virtual reality. In the past, this has required extensive manual animation. Regardless of the advances in human body and face reconstruction, still modeling, learning and analyzing human dynamics need further attention. In this paper we plan to push the research in this direction, e.g. understanding human dynamics in 2D and 3D, with special attention to garments. We provide a large-scale dataset (more than 2M frames) of animated garments with variable topology and type, calledCLOTH3D++. The dataset contains RGBA video sequences paired with its corresponding 3D data. We pay special care to garment dynamics and realistic rendering of RGB data, including lighting, fabric type and texture. With this dataset, we hold a competition at NeurIPS2020. We design three tracks so participants can compete to develop the best method to perform 3D garment reconstruction in a sequence from (1) 3D-to-3D garments, (2) RGB-to-3D garments, and (3) RGB-to-3D garments plus texture. We also provide a baseline method, based on graph convolutional networks, for each track. Baseline results show that there is a lot of room for improvements. However, due to the challenging nature of the problem, no participant could outperform the baselines.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ MBB2021 Serial 3655  
Permanent link to this record
 

 
Author Joan Codina-Filba; Sergio Escalera; Joan Escudero; Coen Antens; Pau Buch-Cardona; Mireia Farrus edit  url
openurl 
  Title Mobile eHealth Platform for Home Monitoring of Bipolar Disorder Type (down) Conference Article
  Year 2021 Publication 27th ACM International Conference on Multimedia Modeling Abbreviated Journal  
  Volume 12573 Issue Pages 330-341  
  Keywords  
  Abstract People suffering Bipolar Disorder (BD) experiment changes in mood status having depressive or manic episodes with normal periods in the middle. BD is a chronic disease with a high level of non-adherence to medication that needs a continuous monitoring of patients to detect when they relapse in an episode, so that physicians can take care of them. Here we present MoodRecord, an easy-to-use, non-intrusive, multilingual, robust and scalable platform suitable for home monitoring patients with BD, that allows physicians and relatives to track the patient state and get alarms when abnormalities occur.

MoodRecord takes advantage of the capabilities of smartphones as a communication and recording device to do a continuous monitoring of patients. It automatically records user activity, and asks the user to answer some questions or to record himself in video, according to a predefined plan designed by physicians. The video is analysed, recognising the mood status from images and bipolar assessment scores are extracted from speech parameters. The data obtained from the different sources are merged periodically to observe if a relapse may start and if so, raise the corresponding alarm. The application got a positive evaluation in a pilot with users from three different countries. During the pilot, the predictions of the voice and image modules showed a coherent correlation with the diagnosis performed by clinicians.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MMM  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ CEE2021 Serial 3659  
Permanent link to this record
 

 
Author Ajian Liu; Zichang Tan; Jun Wan; Sergio Escalera; Guodong Guo; Stan Z. Li edit  url
doi  openurl
  Title CASIA-SURF CeFA: A Benchmark for Multi-modal Cross-Ethnicity Face Anti-Spoofing Type (down) Conference Article
  Year 2021 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 1178-1186  
  Keywords  
  Abstract The issue of ethnic bias has proven to affect the performance of face recognition in previous works, while it still remains to be vacant in face anti-spoofing. Therefore, in order to study the ethnic bias for face anti-spoofing, we introduce the largest CASIA-SURF Cross-ethnicity Face Anti-spoofing (CeFA) dataset, covering 3 ethnicities, 3 modalities, 1,607 subjects, and 2D plus 3D attack types. Five protocols are introduced to measure the affect under varied evaluation conditions, such as cross-ethnicity, unknown spoofs or both of them. As our knowledge, CASIA-SURF CeFA is the first dataset including explicit ethnic labels in current released datasets. Then, we propose a novel multi-modal fusion method as a strong baseline to alleviate the ethnic bias, which employs a partially shared fusion strategy to learn complementary information from multiple modalities. Extensive experiments have been conducted on the proposed dataset to verify its significance and generalization capability for other existing datasets, i.e., CASIA-SURF, OULU-NPU and SiW datasets. The dataset is available at https://sites.google.com/qq.com/face-anti-spoofing/welcome/challengecvpr2020?authuser=0.  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ LTW2021 Serial 3661  
Permanent link to this record
 

 
Author Henry Velesaca; Patricia Suarez; Dario Carpio; Angel Sappa edit  url
openurl 
  Title Synthesized Image Datasets: Towards an Annotation-Free Instance Segmentation Strategy Type (down) Conference Article
  Year 2021 Publication 16th International Symposium on Visual Computing Abbreviated Journal  
  Volume 13017 Issue Pages 131–143  
  Keywords  
  Abstract This paper presents a complete pipeline to perform deep learning-based instance segmentation of different types of grains (e.g., corn, sunflower, soybeans, lentils, chickpeas, mote, and beans). The proposed approach consists of using synthesized image datasets for the training process, which are easily generated according to the category of the instance to be segmented. The synthesized imaging process allows generating a large set of well-annotated grain samples with high variability—as large and high as the user requires. Instance segmentation is performed through a popular deep learning based approach, the Mask R-CNN architecture, but any learning-based instance segmentation approach can be considered. Results obtained by the proposed pipeline show that the strategy of using synthesized image datasets for training instance segmentation helps to avoid the time-consuming image annotation stage, as well as to achieve higher intersection over union and average precision performances. Results obtained with different varieties of grains are shown, as well as comparisons with manually annotated images, showing both the simplicity of the process and the improvements in the performance.  
  Address Virtual; October 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ISVC  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ VSC2021 Serial 3667  
Permanent link to this record
 

 
Author Patricia Suarez; Dario Carpio; Angel Sappa edit  url
openurl 
  Title Non-homogeneous Haze Removal Through a Multiple Attention Module Architecture Type (down) Conference Article
  Year 2021 Publication 16th International Symposium on Visual Computing Abbreviated Journal  
  Volume 13018 Issue Pages 178–190  
  Keywords  
  Abstract This paper presents a novel attention based architecture to remove non-homogeneous haze. The proposed model is focused on obtaining the most representative characteristics of the image, at each learning cycle, by means of adaptive attention modules coupled with a residual learning convolutional network. The latter is based on the Res2Net model. The proposed architecture is trained with just a few set of images. Its performance is evaluated on a public benchmark—images from the non-homogeneous haze NTIRE 2021 challenge—and compared with state of the art approaches reaching the best result.  
  Address Virtual; October 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ISVC  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ SCS2021 Serial 3668  
Permanent link to this record
 

 
Author Javad Zolfaghari Bengar; Joost Van de Weijer; Bartlomiej Twardowski; Bogdan Raducanu edit  url
doi  openurl
  Title Reducing Label Effort: Self- Supervised Meets Active Learning Type (down) Conference Article
  Year 2021 Publication International Conference on Computer Vision Workshops Abbreviated Journal  
  Volume Issue Pages 1631-1639  
  Keywords  
  Abstract Active learning is a paradigm aimed at reducing the annotation effort by training the model on actively selected informative and/or representative samples. Another paradigm to reduce the annotation effort is self-training that learns from a large amount of unlabeled data in an unsupervised way and fine-tunes on few labeled samples. Recent developments in self-training have achieved very impressive results rivaling supervised learning on some datasets. The current work focuses on whether the two paradigms can benefit from each other. We studied object recognition datasets including CIFAR10, CIFAR100 and Tiny ImageNet with several labeling budgets for the evaluations. Our experiments reveal that self-training is remarkably more efficient than active learning at reducing the labeling effort, that for a low labeling budget, active learning offers no benefit to self-training, and finally that the combination of active learning and self-training is fruitful when the labeling budget is high. The performance gap between active learning trained either with self-training or from scratch diminishes as we approach to the point where almost half of the dataset is labeled.  
  Address October 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes LAMP; Approved no  
  Call Number Admin @ si @ ZVT2021 Serial 3672  
Permanent link to this record
 

 
Author Javad Zolfaghari Bengar; Bogdan Raducanu; Joost Van de Weijer edit  url
openurl 
  Title When Deep Learners Change Their Mind: Learning Dynamics for Active Learning Type (down) Conference Article
  Year 2021 Publication 19th International Conference on Computer Analysis of Images and Patterns Abbreviated Journal  
  Volume 13052 Issue 1 Pages 403-413  
  Keywords  
  Abstract Active learning aims to select samples to be annotated that yield the largest performance improvement for the learning algorithm. Many methods approach this problem by measuring the informativeness of samples and do this based on the certainty of the network predictions for samples. However, it is well-known that neural networks are overly confident about their prediction and are therefore an untrustworthy source to assess sample informativeness. In this paper, we propose a new informativeness-based active learning method. Our measure is derived from the learning dynamics of a neural network. More precisely we track the label assignment of the unlabeled data pool during the training of the algorithm. We capture the learning dynamics with a metric called label-dispersion, which is low when the network consistently assigns the same label to the sample during the training of the network and high when the assigned label changes frequently. We show that label-dispersion is a promising predictor of the uncertainty of the network, and show on two benchmark datasets that an active learning algorithm based on label-dispersion obtains excellent results.  
  Address September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CAIP  
  Notes LAMP; Approved no  
  Call Number Admin @ si @ ZRV2021 Serial 3673  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: