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Abstract

Human avatars are important targets in many computer applications. Accurately track-
ing, capturing, reconstructing and animating the human body, face and garments in 3D are
critical for human-computer interaction, gaming, special effects and virtual reality. In the
past, this has required extensive manual animation. Regardless of the advances in human
body and face reconstruction, still modeling, learning and analyzing human dynamics need
further attention. In this paper we plan to push the research in this direction, e.g. under-
standing human dynamics in 2D and 3D, with special attention to garments. We provide
a large-scale dataset (more than 2M frames) of animated garments with variable topology
and type, called CLOTH3D++. The dataset contains RGBA video sequences paired
with its corresponding 3D data. We pay special care to garment dynamics and realistic
rendering of RGB data, including lighting, fabric type and texture. With this dataset, we
hold a competition at NeurIPS2020. We design three tracks so participants can compete
to develop the best method to perform 3D garment reconstruction in a sequence from (1)
3D-to-3D garments, (2) RGB-to-3D garments, and (3) RGB-to-3D garments plus texture.
We also provide a baseline method, based on graph convolutional networks, for each track.
Baseline results show that there is a lot of room for improvements. However, due to the
challenging nature of the problem, no participant could outperform the baselines.

Keywords: 3D garment reconstruction, texture prediction, CLOTH3D++, dynamics,
NeurIPS2020

1. Introduction

3D human reconstruction from still images has been widely explored over the last few years.
This is due to the wide applicability it has in entertainment and video game industries, and
recently, in the VR/AR domains as well. Understanding of 3D scenarios allows for a higher
level of human-computer interaction. While body pose and shape regression has undergone
a significant progress by the scientific community, new research lines focus on recovering
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garments along the body. This task comes with additional challenges, such as more complex
geometries, different topologies and color variability.

Despite the growth of deep learning algorithms in the domain of RGB-based 3D gar-
ment reconstruction, there is not a common benchmark dataset available to compare these
algorithms. While capturing RGB data from the real world is easy, obtaining accurate and
rich annotations for garments is very challenging. Due to this, available datasets are either
of small-scale von Marcard et al. (2018); Wang et al. (2018); Zhu et al. (2020) or poor in
terms of cloth dynamics Pumarola et al. (2019). Recently, Bertiche et al. (2019) proposed
CLOTH3D dataset, a large scale synthetic dataset with variable pose, garment type and
dynamics. However, it is a purely 3D dataset with no RGB data. We aim to complement
these data through realistic RGBA renderings of its animated 3D dressed humans. We
then extend CLOTH3D dataset into a more complete dataset, presented as CLOTH3D++1

(see Fig. 1 for some examples), the first large-scale video dataset of animated dressed hu-
mans with dense 3D annotations for body and cloth, as well as high resolution textures.
Therefore, one can train deep algorithms to reconstruct full garments, i.e. 3D plus texture.
CLOTH3D++ is compared with available RGB-based 3D garment datasets in Tab. 1.

Available garment generation techniques are either image-to-image, which are not ex-
plicitly aware of garment dynamics and body-garment interactions, or 3D-to-3D without
texture. In this paper, we give a special attention to the image-based 3D garment and
texture reconstruction which is a highly dynamic problem with objects of variable topol-
ogy and shape. In this regard, we implement baselines based on convolutional graph neural
networks for three tasks: 1) garment animation, 2) RGB-based 3D garment reconstruction
and 3) texture estimation; and conduct a competition on CLOTH3D++ benchmark. This
is the first event taking a deep look at garment dynamics, either in data structures, deep
models or evaluation metrics.

Briefly, our contributions are:
• We build a new large scale synthetic dataset, CLOTH3D++, for RGB-based garment

and texture reconstruction,
• We organize a competition on CLOTH3D++ dataset in three tracks. We build a

platform, implement baselines and necessary code to work with the data, design the
rules and evaluation metrics,

• We thoroughly discuss the results.

2. Related Work

RGB-based 3D Garment Datasets. To date, only a few available repositories focus on
RGB-based 3D garment datasets. The 3DPW dataset von Marcard et al. (2018), captured
from outdoor scenes, contains 18 clothed models that can be shaped and posed as SMPL.
This dataset does not provide garment texture and its main focus is on shape and pose.
Recently, the authors of Bhatnagar et al. (2019) propose a dataset of garments and body
shapes from 3D scans. However, the amount of samples is in the order of a few hundreds
and is limited to five clothing styles. More recently, Zhu et al. (2020) proposes a real data of
over 2000 clothing models. Similar to 3DPW, garment texture is not provided. The works
of Wang et al. (2018); Pumarola et al. (2019) propose synthetic datasets generated through

1. The dataset and starting kit can be downloaded here: http://chalearnlap.cvc.uab.es/dataset/38/description/
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Dataset 3DPW Untitled 3DPeople Fashion3D CLOTH3D++
Resolution 2.5cm 1cm - ≈ 0.5cm 1cm

Missing x x x X x
Dynamics x x x x X
Garments 18 3 High 563 12.9K
Texture x X X x X
Fabrics x x x x X
Poses Low Very low Low Low High

Subjects 18 2K 80 Low 9.7K
Layered x X - x X

#samples 51k 24K 2.5M 2078 2.2M
Type Real Synth. Synth. Real Synth.

scan Multi-view
GT error 26mm None None Unknown None

Table 1: CLOTH3D++ vs. publicly available 3D cloth datasets (i.e. 3DPW (von Mar-
card et al. (2018)), Untitled (Wang et al. (2018)), 3DPeople (Pumarola et al. (2019)) and
Fashion3D (Zhu et al. (2020))). CLOTH3D++ shows rich annotations and features, in-
cluding fabrics and high variability in garment type, dynamics and body pose. It provides
a challenging benchmark to study RGB-based 3D garment reconstruction.

physical simulation. The dataset of Wang et al. (2018) presents an automatic garment
resizing based on real patterns, only providing static samples on a few different poses for
three clothing styles. Closer to our work, 3DPeople dataset Pumarola et al. (2019) provides
a large dataset of synthetic 3D humans with clothing. Nevertheless, this dataset differs from
ours in many aspects. On one hand, this dataset is given as multi-view images. It includes
RGB, depth, normal and scene flow, but not 3D models. On the other hand, the clothing
are rigged without proper dynamics. Our CLOTH3D++ dataset aims to address previous
datasets limitations. We provide a large-scale dataset (more than 2.4M frames) of animated
garments with a huge variability on clothing type, topology, shape, size, tightness and fabric,
with realistic cloth dynamics. In Tab. 1, we show detailed comparisons of properties for
existing datasets and ours.

RGB to 3D garment reconstruction. Prior work based on parametric 3D body
models encoding shape and pose deformations separately, being learnt from thousands of
scans of real people Dragomir et al. (2005); Loper et al. (2015). These body models provide
a good prior for 3D garment reconstruction. However, these models are trained to just
capture the human body. There are attempts to reconstruct clothed body from video inputs
Alldieck et al., 2018), RGB-D data Yu et al. (2019) and multi-view images Bhatnagar et al.
(2019); Xu et al. (2019). Although, in these approaches, richer inputs clearly provide more
information than a single image, the developed pipelines yield additional setup/hardware
constraints and extra computation, limiting applicability. Recently, new approaches based
on deep learning Varol et al. (2018); Sun et al. (2018); Saito et al. (2019); Ryota et al. (2019);
Alldieck et al. (2019a,b); Zheng et al. (2019); Lazova et al. (2019) addressed single-view
dressed body estimation. However, for all these methods, heavy manual post-processing
is needed to extract the clothing surface from the reconstructed result. Furthermore, the
reconstructed garments still lack realism. Closer to our work, there are few approaches
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that propose to reconstruct garment as a layer separated from the body. DeepGarment
Danerek et al. (2017) proposes to use physics based simulations as supervision for learning
a garment shape estimation model. However, it only works for seen garments and does not
provide realistic results. Lehnar et al. Lahner et al. (2018) design a method to synthesize
garment wrinkles onto a coarse garment mesh following a given pose. This method, however,
needs a computationally demanding step to register the template cloth to the captured 4D
scan. Additionally, the method is limited to a fixed topology and cannot scale well to large
deformations. Multi-Garment Net Bhatnagar et al. (2019) learns per-category garment
reconstruction from images using 3D scanned data. However, this method typically requires
8 input RGB images and fails to reconstruct complex clothing topology such as skirts and
dresses.

RGB to 3D garment and texture reconstruction. Some recent works Lazova
et al. (2019); Alldieck et al. (2019b); Lahner et al. (2018) propose to use 2D UV map rep-
resentation for estimating geometry and color details. Particularly, the Tex2Shape method
of Alldieck et al. Alldieck et al. (2019b) aims to reconstruct high quality 3D geometry by
regressing displacements in an unwrapped UV space. Nevertheless, this type of approach
is limited by the topology of the template mesh (need of different mesh topology for skirts
and dresses) and the topology of the UV parametrization (e.g. visible seam artifacts around
texture seams). Other works Tulsiani et al. (2017); Sun et al. (2018) propose volumetric
voxel representations for colored 3D reconstruction. For example, Im2Avatar Sun et al.
(2018) performs textured single-image reconstruction, using colored voxels as the output
representation. Other approaches Saito et al. (2019); Oechsle et al. (2019); Ryota et al.
(2019) use implicit functions representation to recover shape and texture of clothed human
bodies. Unlike explicit representations (e.g. meshes, voxels, point clouds) these methods
learn functions to parametrize a 3D volume or surface. For instance, PiFu Saito et al. (2019)
learns an implicit surface function based on aligned image features. This model generates
clothes details but does not predict a realistic texture of the occluded regions of the dressed
person (e.g. back of the person). Also, it is less robust to pose variations. Here, we propose
a novel architecture that exploits the shape and topology of the human body to explicitly
predict analytical 3D surfaces as garments from still images with a differentiable geometry.
In addition, we show that it can be directly applied to color prediction as well.

3. Contest overview

In this section, we provide generic information about the competition including tracks,
design and metrics.

3.1. Tracks

The competition consisted on three tasks:
• 3D-to-3D garment reconstruction: participants must train their models on input

3D data including a 3D garment in rest pose, body shape and a sequence of body
pose. The goal of this task was to learn garment dynamics to build generative models
for 3D reconstruction.

• Image-to-3D garment: participants must reconstruct 3D garments from either a
single RGB image or a sequence of images. This was a more challenging task since
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proposed methodologies must be able to deal with lighting, occlusions, viewpoint,
body pose, etc. In this (and next) track, we provided SMPL root joint location, along
with RGBA images, available at inference time. The reason was to avoid ambiguities
in scale due to subject size or distance to camera.

• Image-to-3D garment and texture reconstruction: In this task participants’
models must be able to recover the color (without light effect) along with 3D garments.
We did not restrict participants in the output format of predicted colors, that is, it
could be a per vertex color or texture UV map. This was the most challenging task
since the models must be able to deal with variable lighting and self-occlusions to
predict a realistic texture along with 3D garments.

The predicted garments had to have a 3D mesh format for evaluation. Although we
provided a ground truth grid topology per 3D garment in our dataset, participants had
freedom in their model design and they could generate any topology they found more
suitable for the data. Participants also could opt to submit their solutions for one or all
tasks.

3.2. Design

We run the challenge in two stages: development and final phases.
• Development Phase: We released labeled training data (with meta-data) and un-

labeled validation data at the beginning of this phase. Then, participants could train
their models on training samples. Training data was common among all tracks while
validation (and test) data was common among track 2 and 3 and different from track
1. During this phase, participants could submit their predictions on the validation
data to the provided platform and obtain feedback on the leaderboard. This phase
has been designed to allow participants to tune their models to avoid overfitting on
the test set. This phase continued for six months.

• Final Phase: This phase started immediately after the development phase and con-
tinued for two weeks. One week before the end of development phase, due to the big
size of data, we released encrypted validation set ground truth and unlabeled final
(test) data for all 3 tracks such that participants with poor internet connection could
download the data in time. In this phase, participants could finetune their models
with validation data. The winners of each track were determined by the leaderboard
rank of this phase.

We used the CodaLab platform2 to run all the tracks with the aid of Google cloud (a
quad-core CPU server) as the backend computing. Participants had to submit their predic-
tions to Codalab. Due to huge prediction files (1̃GB) and long evaluation time, we limited
participants to 1 daily submission per team and a maximum of 10 submissions during the
final phase. Participants were not allowed to use any other data than the provided dataset
for the purpose of 3D reconstruction. However, intelligent data augmentation was allowed.
Finally, participants had to outperform our baseline score as a minimum requirement to
enter the evaluation process. After the evaluation process, top three ranked participants for
each track had to send code and fact sheets describing their methods to be eligible for prizes.
In overall, 80, 58 and 55 participants registered in tracks 1, 2 and 3, respectively. However,

2. https://competitions.codalab.org/
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no team could outperform our baseline scores in test stage. Therefore, the competition had
no winner.

3.3. Metrics

In order to rank participants, we used the following metrics based on the task.

• Track 1 and 2: We evaluated predicted outfit surface using Surface-to-Surface dis-
tance (S2S), an extension of Chamfer distance (CD). It was computed based on the
nearest face rather than nearest vertex. We defined S2S distance as:

1

2N1

∑
p∈S1

min
f∈T2

dist(p, f) +
1

2N2

∑
p∈S2

min
f∈T1

dist(p, f), (1)

where S1 and T1 are the set of 3D surface vertices (with N1 points) and mesh triangles
for ground truth outfit, respectively, likewise S2 and T2 belong to the predicted outfit,
and dist(p, f) is the Euclidean distance between vertex p and the triangle f .

• Track 3: Quantitative evaluation for surface and texture did not guarantee that the
top-ranked method necessarily predicts the best quality results, specially on texture.
Therefore, in this track we measured the quality of the full reconstructed model. We
measured this score through qualitative evaluation done by several human judges.
Firstly, we ranked participants based on S2S metric and top 10 teams were considered
in the qualitative measurements. Then, we reconstructed the full garment model
(3D+texture) for a number of samples and asked the judges to answer the following
questions by comparing teams in a pairwise manner.

– Which team performs better in terms of realistic garment dynamics in the se-
quence?

– Which team looks more similar to the ground truth in terms of garment type
and 3D reconstruction?

– Which team performs better in terms of realistic texture pattern? A team must
be penalized if always generate the same texture pattern or a plain color.

– Which team looks more similar to the ground truth in terms of texture pattern
and color?

This resulted in a tensor with size (#Participants, #Participants, #Questions, #Judges).
The final score for each participant was the average over the last three dimensions.
We ranked participants based on this score. Note that this scoring was done just
once at the end of the competition and not shown in the leaderboard. However, we
showed S2S score on the leaderboard during the development phase. Also, judges did
not take into account human skin or hair color for their decisions. We provided a
python script to the judges to visualize 3D predicted garments and rank them by the
perceived generation quality.

4. CLOTH3D++ Dataset

Among the current available datasets on 3D garments, CLOTH3D Bertiche et al. (2019)
has the highest subject and outfit variability, plus different fabrics and rich cloth dynam-
ics. CLOTH3D is a purely 3D dataset of animated dressed humans (SMPL Loper et al.
(2015)) obtained through Physically Based Simulation (PBS). For CLOTH3D++, we pick
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Figure 1: CLOTH3D++ RGBA samples.
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Figure 2: Left) PBR materials used for rendering. From left to right: skin, cotton, silk,
denim and leather. Right) We generate uniform skin, hair and eye color variability as an
effort towards an unbiased artificial intelligence.

CLOTH3D data and render RGB images with different textures, skin color and lighting.
Additionally, we follow the same protocol as CLOTH3D to simulate and render new 3D
garments as our test set. We show some examples of CLOTH3D++ in Fig. 1. Next, we
explain details of the dataset.

4.1. Rendering

We use an unbiased ray-tracing engine, Cycles, integrated into an open-source 3D creation
suite (Blender), to render realistic images. Such render engines obtain images through a
PBS of light rays that appear in the 3D scene, achieving a natural light interaction w.r.t.
the object materials and camera. We use Physically Based Rendering (PBR) materials for
the different fabrics and human skin. Fig. 2 shows an example of each.

We render garments with different PBR materials and random uniform colors or textured
patterns. To do so, 3D meshes are unwrapped into UV maps on top of a texture image. If not
unwrapped properly, textures will show significant distortions on the renderings. Available
tools (e.g. Blender) generate UV maps as non-continuous and non-uniform patches. This
yields broken textures on rendering. In CLOTH3D++, we build an automatic tool to create
continuous UV maps. We do so by computing seams of minimal path length that connect
garment boundaries (see Sec. 4.4 for more details). We gathered over 100 texture images of
size 2048×2048. Although, the choice of the garment textures could exhibit some bias in the
dataset, we applied some transformations during rendering to minimize the possibility of
repeating textures. More precisely, we transformed texture colors by shifting the image hue
and randomly scaling saturation and value (HSV) to increase data variability. Additionally,
we scaled UV maps randomly to obtain different pattern sizes. In Fig. 3 we illustrate some
samples of texture images, the proposed UV maps and their corresponding renderings.
Finally, aiming towards ethnically unbiased artificial intelligence, we sample different colors
for hair, skin and pupils (See Fig. 2). For this same reason, we only store color labels (or
patterns) for garments, not for the skin.

4.2. Setup

To generate garments in a sequence, we ensure the outfit covers both upper and lower
body. An outfit is one layer of jumpsuit or dress, or a combination of two sets top, t− shirt
and skirt, trousers. CLOTH3D consists of dressed humans moving in a 3D space. In
CLOTH3D++, to keep as much of the subject in the frame as possible, we center its trajec-
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Figure 3: Top: 3D garments with PBR materials and color patterns. Bottom: associated
UV maps on top of their corresponding color pattern. Note that even without a color
pattern (skirt, bottom-right), it is still necessary an UV unwrapping for the PBR materials.
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Train

Garment type Top T-shirt Trousers Jumpsuit Skirt Dress All

Gender (%)
Female 46.4 48.5 32.6 48.0 100 100 64.2
Male 53.6 51.5 67.4 52.0 0 0 35.8

Texture (%)
Pattern 51.2 50.3 37.4 37.3 37.6 38.3 40.9
Color 48.8 49.7 62.6 62.7 62.4 61.7 59.1

Fabric (%)

Silk 50.1 50.3 22.6 24.6 27.9 24.7 30.8
Leather 0 0 26.2 25.5 25.3 25.9 19.3
Cotton 49.9 49.7 24.5 25.0 24.4 24.9 31.1
Denim 0 0 26.8 24.9 22.4 24.5 18.8

# vertices 1866±501 5311±992 7039±1955 10702±2577 4651±1215 8017±2160 7244±3397
# frames 320K 328K 505K 683K 143K 613K 1.95M

Test

Garment type Top T-shirt Trousers Jumpsuit Skirt Dress All

Gender (%)
Female 37.9 35.5 19.8 38.8 100 100 54.5
Male 62.1 64.5 80.2 61.2 0 0 45.5

Texture (%)
Pattern 71.9 77.3 58.3 56.0 46.3 56.3 61.0
Color 28.1 22.7 41.7 44.0 53.7 43.7 39.0

Fabric (%)

Silk 46.7 53.1 26.3 22.6 19.5 24.7 30.9
Leather 0 0 26.0 25.6 30.2 26.8 19.4
Cotton 53.3 46.9 24.4 26.5 26.8 22.9 31.5
Denim 0 0 23.3 25.3 23.5 25.6 18.2

# vertices 1862±485 5325±976 6890±1989 10936±2539 4599±1187 8121±2198 7315±3451
# frames 56K 76K 105K 135K 27K 102K 246K

Table 2: CLOTH3D++ dataset statistics.

tory by subtracting the mean horizontal value (XY plane). Camera is always aligned with
the X-axis at a uniformly sampled distance within range [4, 6] meters. Unbiased viewpoint
variability is obtained by randomly rotating the whole scene around Z-axis (vertical axis).
Regarding lights, indoor scenes are emulated by randomly sampling one or few point lights
(light bulbs) placed at a constant height (ceiling) but random position in the XY plane.
Outdoor scene lightning is represented by a sun light (parallel rays from infinity) with ran-
dom intensity and direction to simulate different weather conditions. Videos are rendered
with a resolution of 640× 480 at 30 fps. We opted for RGBA renderings (no background)
to allow researchers full flexibility and put the focus on the 3D garment reconstruction and
color/pattern retrieval problem.

4.3. Data statistics

We use CLOTH3D dataset as the ground truth for our training set (1.95M frames). Ad-
ditionally, we simulate and render 2K sequences with a maximum length of 300 frames as
our test set. We pick SMPL pose parameters of the test sequences from AMASS dataset
Mahmood et al. (2019). Around 25% of the test poses are not seen in the training. Fig. 4
shows training and test pose distribution. CLOTH3D++ contains a rich set of annotations:
1) Body SMPL parameters, 2) Garment Type, fabric, topology, per-vertex location, UV
map and RGB texture pattern, and 3) Scene camera matrix, light type and configuration.
Dataset statistics are shown in Tab. 2.

4.4. UV unwrapping

CLOTH3D Bertiche et al. (2019) dataset contains thousands of sequences with different
garments. Each of these garments is represented as a mesh. In order to provide of color
patterns to these garments, a prior UV unwrapping step is necessary. Since each garment
mesh structure is different, each must be unwrapped independently. Typical automatic
unwrapping methods are not sufficient. Fig. 5 illustrates typical automatic unwrapping
techniques against our proposed approach. The first approach flattens the mesh without
splitting into submeshes. As it can be seen, this generates significant distortions. Flattening
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Figure 4: CLOTH3D++ SMPL pose distribution in training and test. t-SNE with perplex-
ity of 50 is used. We show some examples of the test that are unseen during the training.
Body meshes are computed with all-zero shape parameters.

a curved 3D surface into a 2D plane is always subject to this effect (similar to world maps).
On the second example we see the result obtained through an automatic UV unwrapping
algorithm built into Blender (open-source 3D creation suite). It splits the mesh by cutting
it along seams. These seams are defined taking into account the angle differences among
faces. This methodology avoids any distortion effect, but it is likely that it will produce
discontinuities in the color patterns on rendering. In the last example, we obtain a more
accurate result by using the minimal seams to avoid distortion. Usually, such unwrappings
are performed by hand. Nonetheless, due to the size of CLOTH3D, it becomes intractable.
We propose an approach to deal with this in a fully-automatic way for generic unstructured
garment meshes.

Figure 5: Different UV unwrapping approaches applied to garments. Left: without cutting
the mesh, as it can be seen, it generates high distortions. Middle: automatic UV unwrapping
(Blender), cuts the meshes according to angles between faces. It generates too many cuts
and results in fragmented textures on rendering. Right: our proposed approach, minimizes
distortions and cuts.

The idea behind it is to find the optimal seams that connect all garment boundaries
with a minimal length. To do so, we first assume that all edges of a given garment have
the same length. This permits finding minimal paths along a graph with BFS (Breadth
First Search). For each boundary, we want to have the minimal path to each of the other
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boundaries. We begin the exploration from an imaginary vertex that it is connected to all
the vertices that make the starting boundary. This will implicitly compute the minimal
path from all the vertices of the given boundary at the same time. Then, given boundaries
B = {B0, B1, ..., BN}, we compute paths P = {(Bi, Bj) ∀(Bi, Bj) ∈ B × B | i 6= j}.
Finally, we compute the possible combinations of paths in P that fulfill that each boundary
Bi is connected to exactly 2 different boundaries. From all of these combinations, we select
the one with minimal path length. Note that for garments with only two boundaries (skirts
and tube dresses), the problem is simplified, as it is only necessary to compute the minimal
path between B0 and B1.

Figure 6: Track 1 architecture receiving template garment offsets and generating updated
offsets. At the end garment is animated through skinning.

5. Baselines

We use Bertiche et al. (2019) architecture as the backbone of our baselines which is a
graph convolutional network (GCN). Garments are first registered on top of body surface,
represented by SMPL model Loper et al. (2015), in order to obtain a uniform topology
among all garments. Then, body vertices that are not paired with garment vertices are
masked out. In this paper, default SMPL body topology and vertices are updated to
represent a new template for skirt-like garments which do not follow body topology. This
architecture allows us to train a single model on the whole dataset with variable garment
topology and type. Next, we explain specific modifications for each track.

5.1. 3D-to-3D garment reconstruction

This baseline is an encoder-decoder network conditioned on SMPL body shape and a se-
quence of pose (see Fig. 6 for the architecture pipeline). Conditioning variables (CVAR)
are processed in an autoencoder network to obtain balanced conditioning features. Con-
ditioning network is trained independent to the main encoder-decoder branch (by L1 loss)
and its weights are freezed. The encoder receives garments offsets from SMPL surface in
rest pose obtained by registration. The features in the last encoder layer are fused by a
global average pooling and is concatenated with the middle layer of conditioning network.
These features are processed through a fully connected layer and reshaped to form the
decoder input tensor. The decoder output is added to SMPL body template in rest pose.
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The template is selected based on garment type. If the garment is a skirt or a dress, the
modified template is applied. Finally, the garment is posed through skinning with SMPL
blend weights.

We apply two loss functions to train the network: L1 loss on the reconstructed 3D
garment vertices and L1 loss on the surface normals computed on mesh faces. We train the
network for 50 epochs with batch size of 24 including both skirt and non-skirt garments
and Adam optimizer with a learning rate of 1e− 4.

Figure 7: Track 2 architecture. Features are extracted from RGB image concatenated
with estimated garment semantic labels. Similar to track 1 architecture, the network is
conditioned on previously predicted body pose and shape. At the end, garment offsets and
the mask are predicted.

5.2. RGB-to-3D garment reconstruction

For this task, we apply a similar baseline to Sec. 5.1 with two differences (see Fig. 7): 1)
the encoder is ResNet50 architecture, and 2) the decoder outputs a garment-vs-body binary
mask along with garment offsets. In this track, there is no data and meta-data (except
SMPL root joint location) available at inference and all necessary information for garment
reconstruction must be learned from RGB images. Necessary data to run this baseline are 1)
SMPL pose and shape parameters, and 2) garment topology (skirt vs. non-skirt). For this
reason we train two preprocessing networks: 1) SMPLR (Madadi et al. (2018)) to obtain
SMPL pose and shape parameters as conditioning variables, and 2) PSPNet (Zhao et al.
(2017)) to estimate per pixel garment semantic segments. Semantic labels are estimated for
two reasons: 1) as input to the network along with RGB image helping to estimate a more
accurate garment mask, and 2) to properly select the topology during inference by a hand-
crafted top-down strategy. Note that RGB images are first preprocessed through cropping
and color normalization (division by 255). Since SMPL root joint location is available,
we can crop the images homogeneously using a fixed-size box centered on root joint and
projected to camera plane. Then, the cropped image is resized to 256 × 256 pixels. We
train this baseline with the same loss and hyperparameters as track 1, as well as L1 loss on
the garment mask.

Now we explain our top-down strategy to classify garment type. We train PSPNet based
on 8 semantic labels: 6 garment types, body and background. Let NM be the number of
pixels in the resized image belonging to the body and garment, P ∈ R6 be the PSPNet
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average probability per garment class, N ∈ R6 be the number of estimated garment labels
normalized by NM and S = P � N be a weighted probability vector per garment class
where � is Hadamard product. Then, if the maximum score index belongs to “dress” or
“jumpsuit”, we have a one layer outfit with its associated topology. Otherwise, we have
a two-layer outfit (e.g. “top” plus “skirt” or “Tshirt” plus “trousers”) and we check the
second maximum score and compare it with the first one. For instance, if the first score
is a “skirt”, then the second score cannot be a “trousers”. In this case, we take the third
maximum score index.

Figure 8: Track 3 architecture. Per vertex color is predicted in a similar fashion to the
track 2 while no conditioning variable is fed.

5.3. RGB-to-texture reconstruction

We update track 2 baseline to estimate texture as per vertex color. To do so we remove
conditioning branch and garment skinning, and instead of garment offsets we predict vertex
RGB color. We also remove binary mask output, because we assume it is estimated in track
2 and can be reused in this baseline as well. We show the architecture in Fig. 8. We train
the network with L2 loss. Hyperparameters are set as the other tracks.

6. Results

Since the competition has no winning solution, we only show the baseline results in this
section both quantitatively (i.e. S2S error on track 1 and 2) and qualitatively. We show
the results in different subsets of the test set in Tab. 3 and 4. Categorization in Tab. 3
is based on texture type (pattern or plain color), lighting conditions (indoor or outdoor),
pose distribution (seen or unseen pose during training) and fabrics (leather, denim, silk and
cotton). Note that regarding pose distribution, we do not have any repeating pose sequence
in the whole dataset. To define unseen poses, we compute Euclidean distance between test
poses and the nearest pose in training set. Test samples with a distance above a threshold
(> 1.5) are considered as unseen.

In Tab. 3, without any surprise, RGB-to-3D baseline works more than 2.5 times worse
than 3D-to-3D baseline. The reason is the challenges in RGB images: lighting, viewpoint
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Pattern Plain Indoor Outdoor Seen Unseen Leather Denim Silk Cotton All
texture color pose pose

Track 1 - - - - 10.6 13.7 12.1 11.4 10.1 10.6 11.3

Track 2 32.5 29.4 29.0 29.3 27.9 33.6 27.0 30.0 33.4 30.1 29.2

Table 3: S2S error (in mm) on different subsets of data.

Top T-shirt Trousers Jumpsuit Skirt Dress All

Track 1 8.5 9.8 7.1 7.0 18.2 19.5 10.8

Track 2 23.9 43.3 40.6 22.1 32.8 29.3 31.3

Table 4: S2S error (in mm) per garment.

and, more importantly, loss of third dimension in projection from 3D to image plane. As
expected, unseen poses have around 25% worse error than seen poses in both tracks. Inter-
estingly, silk category has the lowest error among all fabrics in track 1, while in track 2 it
has the highest error. This behavior can be explained by silk light reflecting and diffusion
(as compared in Fig. 2). This is in reverse for leathers which have the lowest dynamical
behavior among others. Regarding the texture type in track 2, garments with plain colors
have slightly lower error than pattern textures. This is while different lighting conditions
(indoor vs. outdoor) do not show any meaningful difference in error. Track 2 baseline
is conditioned on body pose and shape, per pixel semantic labels and classified garment
types. Our trained SMPLR on CLOTH3D++ has 68.4 mm average per joint error on test
set. This is while our proposed garment classification based on PSPNet semantic labels
performs very good with 0.90 F1 score on test set. Therefore, body pose has more impact
on the garment reconstruction than other conditioning variables.

In Tab. 4, we analyse per garment error. While a similar pattern can be observed
between both tracks, Tshirt and trousers are exceptions with surprisingly high error in
track 2. One reason is a wrong predicted garment mask for these garments. In track 1,
the model performs worse on Tshirt than trousers, perhaps because of a more challenging
dynamic on Tshirt, specially open-front shirt. According to the data statistics in Tab. 2,
jumpsuit has the largest number of frames forcing the network biasing towards it yielding
the lowest error in both tracks. Although dress has the second largest number of samples, it
shows a high error due to its complex dynamics (along with skirt). Interestingly, although
top has a reasonable amount of samples with simple dynamic, it does not show the best
performance in both tracks.

Although our baselines in track 1 and 2 show average errors as small as 11.3mm and
29.2mm, respectively, there is a huge space for improvements. This can be seen qualitatively
in Fig. 9 and 10. We discuss limitations of our baselines w.r.t. these figures: 1) in track 1,
registration is required as preprocessing at inference for each sequence, 2) predictions show
a large amount of garment-body penetration without having a loss penalizing them during
training, 3) network converges to average smooth garments and not learning low frequency
details, 4) although the network is conditioned on temporal poses, the decoder can not
implicitly handle dynamics, e.g. on skirts, 5) skinning is performed based on SMPL blend
weights and garment-specific blend weights are not modeled which causes broken surfaces,
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Figure 9: Track 1 qualitative results. Pink: ground truth, green: prediction.

Figure 10: Track 2 qualitative results. Pink: ground truth, green: prediction.

and 6) track 2 baseline can not handle multi-layer outfits at once and each garment is
processed separately.

Finally, we show some qualitative samples of track 3 in Fig. 11. As one can see, our
baseline produces smooth homogeneous per-vertex colors visually close to ground truth.
However, it fails to predict pattern textures and over-smooths high frequency details.

7. Conclusions

In this paper, we introduced CLOTH3D++ dataset, a new large scale benchmark for 3D
garment and texture reconstruction from rendered RGB images of simulated clothes. We
designed the rendering conditions to have realistic images and provided a rich set of meta-
data for the dataset. We also provided three baseline methods for 3D garment or texture
reconstruction based on graph convolutional networks applied on registered garments on top
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Figure 11: Track 3 qualitative results. Left: prediction, right: ground truth.

of human body. We showed in the results of 3D garment reconstruction that although our
baselines performed with low surface-to-surface error, there is a large space for qualitative
(and quantitative) improvements specially w.r.t. the garment dynamics. Also, our baseline
for texture reconstruction showed poor performance to generate realistic textures for pat-
terns. This requires a further attention as well as designing metrics to evaluate realism on
generated textures.
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Appendix A. CLOTH3D++ data format

On one hand, we have 3D data as it is in CLOTH3D. These data contain animated humans,
as SMPL Loper et al. (2015) parameter sequences, and garment animation data, as Point
Cache 16, proposed by the authors as a 16-bit float alternative for PC2 format. We also
find additional metadata on each sample, namely: garment labels (t-shirt, trousers, etc.),
tightness and fabric. Since these data are not part of our contribution, we would like to
refer the reader to its original paper for further detail Bertiche et al. (2019). On the other
hand, we have RGBA related data. Video sequences of each sample and metadata about
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the color and the world, in a render context. More formally:
3D Data.

• Human: Subjects are based on SMPL. This metadata has been used for the generation
of the 3D human models.

– Pose sequence: SMPL pose parameters (R72×#frames)
– Shape: SMPL shape parameters (R10)
– Gender: female, male
– Translation sequence: SMPL root joint location (R3×#frames). Root joint is first

aligned at (0, 0, 0) and later moved to its corresponding location. NOTE: SMPL
does not align root joint at origin by default.

• Cloth:
– Animation data (PC16)

• Metadata:
– Outfit: type of garments. A subset of {Top, Tshirt, T rousers, Jumpsuit, Skirt,Dress}

with a maximum of 2 items.
– Tightness: two-dimensional array that describes garment tightness. For details,

we refer to Bertiche et al. (2019).
– Fabric: type of fabric used for the given garment (Cotton, Silk, Denim and

Leather). This has an impact in cloth simulation and rendering.
RGBA Data.

• Video
– RGB
– Alpha (losslessly compressed)

• Garment color
– Type: plain color or pattern.
– HEX Color (only for plain color)
– Pattern as PNG (only for pattern)

• World
– Z-rotation: both human models and garments are rotated a random angle (in

radians) around Z-axis. randomly sampled Z-rotation guarantees viewpoint bal-
ance.

– Camera location: a single 3D point, since it is static through sequences.
– Lights

∗ Type: sun or point. There can be more than one point light.
∗ Power: intensity of the light (different scales for sun and point)
∗ Rotation: 3D orientation in the space (only for sun)
∗ Location (Only for point)
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