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Abstract— We present a methodology to retrieve analytical
surfaces parametrized as a neural network. Previous works
on 3D reconstruction yield point clouds, voxelized objects
or meshes. Instead, our approach yields 2-manifolds in the
euclidean space through deep learning. To this end, we im-
plement a novel formulation for fully connected layers as
parametrized manifolds that allows continuous predictions with
differential geometry. Based on this property we propose a
novel smoothness loss. Results on CLOTH3D++ dataset show
the possibility to infer different topologies and the benefits of
the smoothness term based on differential geometry.

I. INTRODUCTION

3D human reconstruction from still images has been
widely explored over the last few years. This is due to the
wide applicability it has in entertainment and video game
industries, and recently, in the VR/AR domains as well.
Understanding of 3D scenarios allows for a higher level of
human-computer interaction. While body pose and shape re-
gression has undergone a significant progress by the scientific
community, new research lines focus on recovering garments
along the body. This task comes with additional challenges,
such as more complex geometries, different topologies and
color variability.

Deep learning has shown success in 3D inference from
RGB images in the past [13], [35], [8], relying on point
clouds, meshes and voxel representations. Within human-
centric domains, parametric mesh models greatly simplify
the task for face, body and hands [7], [22], [12], [31],
[27]. Some authors propose leveraging this for garment
representation as an extension of parametric body models, or,
alternatively, defining a few models of this kind for a few
garment types [16], [25], [5], [14], [15], [6]. Nonetheless,
previous solutions present some of these drawbacks: single
mesh for body and outfit, low or heterogeneous garment res-
olution or poor garment type –or topology– representativity.
Our methodology infers outfits with different topologies as
continuous parametric surfaces in the 3D space.

In this paper, we propose a methodology to learn analytical
surfaces by parametrizing a fully connected layer in the
shape of a 2-manifold. Since garments are 2-manifolds on
the Euclidean space, we believe this is the appropriate
strategy for this domain. Furthermore, our predictions have
a differential geometry and we show how to leverage this
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to design a novel smoothness loss. Finally, we show this
approach can be directly applied for surface color prediction.
Our contributions are as follow:
• Continuous surfaces. As opposed to the current trends

in 3D domain, we do not rely on discrete representations
such as meshes, point clouds or voxels. Instead, our
architecture is formulated as parametric surfaces, a
continuous representation for outfits.

• Differential geometry. Since our predictions are con-
tinuous, we are able to leverage the differentiability
of the parametric surfaces to guide the learning. More
specifically, we propose a novel surface smoothness loss
term based on this property.

II. RELATED WORK

RGB to 3D garment reconstruction. Prior work based
on parametric 3D body models encoding shape and pose
deformations separately, being learnt from thousands of scans
of real people [11], [19]. These body models provide a good
prior for 3D garment reconstruction. However, these models
are trained to just capture the human body. There are attempts
to reconstruct clothed body from video inputs [3], [2], RGB-
D data [38] and multi-view images [6], [36]. Although, in
these approaches, richer inputs clearly provide more infor-
mation than a single image, the developed pipelines yield
additional setup/hardware constraints and extra computation,
limiting applicability. Recently, new approaches based on
deep learning [34], [32], [29], [28], [1], [4], [40], [18]
addressed single-view dressed body estimation. However, for
all these methods, heavy manual post-processing is needed
to extract the clothing surface from the reconstructed result.
Furthermore, the reconstructed garments still lack realism.
Closer to our work, there are few approaches that propose
to reconstruct garment as a layer separated from the body.
DeepGarment [10] proposes to use physics based simula-
tions as supervision for learning a garment shape estimation
model. However, it only works for seen garments and does
not provide realistic results. Lehnar et al. [17] design a
method to synthesize garment wrinkles onto a coarse garment
mesh following a given pose. This method, however, needs
a computationally demanding step to register the template
cloth to the captured 4D scan. Additionally, the method is
limited to a fixed topology and cannot scale well to large
deformations. Multi-Garment Net [6] learns per-category
garment reconstruction from images using 3D scanned data.
However, this method typically requires 8 input RGB images



and fails to reconstruct complex clothing topology such as
skirts and dresses.

RGB to 3D garment and texture reconstruction. Some
recent works [18], [4], [17] propose to use 2D UV map
representation for estimating geometry and color details.
Particularly, the Tex2Shape method of Alldieck et al. [4]
aims to reconstruct high quality 3D geometry by regressing
displacements in an unwrapped UV space. Nevertheless, this
type of approach is limited by the topology of the template
mesh (need of different mesh topology for skirts and dresses)
and the topology of the UV parametrization (e.g. visible
seam artifacts around texture seams). Other works [33], [32]
propose volumetric voxel representations for colored 3D re-
construction. For example, Im2Avatar [32] performs textured
single-image reconstruction, using colored voxels as the
output representation. Other approaches [29], [23], [28] use
implicit functions representation to recover shape and texture
of clothed human bodies. Unlike explicit representations (e.g.
meshes, voxels, point clouds) these methods learn functions
to parametrize a 3D volume or surface. For instance, PiFu
[29] learns an implicit surface function based on aligned
image features. This model generates clothes details but does
not predict a realistic texture of the occluded regions of the
dressed person (e.g. back of the person). Also, it is less robust
to pose variations. Here, we propose a novel architecture
that exploits the shape and topology of the human body to
explicitly predict analytical 3D surfaces as garments from
still images with a differentiable geometry. In addition, we
show that it can be directly applied to color prediction as
well.

III. LEARNING DEEP PARAMETRIC SURFACES

The goal of this work is to reconstruct 3D outfits from
RGBA images (RGB plus alpha channel for transparency).
Thus, given an image I ∈ RH×W×4, we want to predict
a 3D outfit as a mesh M = {V,F}, where V ∈ RN×3

are its vertices and F ∈ RM×3 is its triangulated faces. We
assume a segmentation mask for the subject is given. Our
model consists on two parts, visual and 3D. For the visual
part, we present CNN-PointNet, an approach inspired on
PointNet [26], a successful digit classification on MNIST. We
encode images as point clouds of high-level color features
with spatial attributes. For 3D, we propose a novel approach
to explicitly predict analytical 3D surfaces. Fig. 1 shows the
proposed pipeline.

A. CNN-PointNet

Qi et al. [26] showed how PointNet can be applied to
MNIST dataset for digit recognition. They represent binary
images α as point clouds B = {(i, j) | αij = 1} ∈ R|B|×2
with |B| =

∑
α. They encode each point independently

through a MLP and aggregate point features by max pooling
the point clouds. Inspired by [26], one can represent RGBA
images as:

A = {xi ∈ RF | αi > 0}. (1)

where, in a naive representation, xi is a feature array contain-
ing the 3 image channels and image coordinates for the i-th

pixel. Here, αi corresponds to the alpha channel. Then with
a high capacity PointNet architecture, it is possible to obtain
per point image embeddings for posterior 3D reconstruction.
Nonetheless, it is more efficient and effective to leverage the
image data structure and obtain higher-level color and spatial
feature arrays prior to the point cloud encoding. Thus, we
apply two convolutional branches: one with 3× 3 filters on
the RGB image and the other with 1 × 1 filters on the XY
pixel coordinate image. We use a stride of 1 and no pooling
between layers. This architecture allows to obtain per-pixel
feature arrays. We latter concatenate the two branches and
apply Eq. 1 to obtain the image point cloud A. Finally, we
apply an additional fully connected layer per point followed
by a max pooling across point clouds (as PointNet). The
output of this part is an image embedding U ∈ RF . CNN-
PointNet contains a much lower number of parameters than
conventional CNNs (∼ 1M vs. ∼ 100M), leverages the
provided image mask and, in our experiments, shows better
performance and faster convergence. Note we assume camera
calibration parameters and subject distance to the camera
are known. Thus, we normalize the pixel coordinates before
feeding the network as:

p′ = dx · (p− j0)/w, (2)

where p are the pixel coordinates, j0 is the human skeleton
root joint image plane coordinates, dx is the distance between
the camera and the root joint and w = 640 is the image
width.

B. Predicting analytical surfaces

Assume a trained MLP f able to perfectly map image
embedding U to infinitely dense outfit point cloud Y′ ∈
R3N (with N →∞). The last layer of this MLP is a linear
transformation as Y′ = WX where X ∈ RF is the input
feature array to the last layer and W ∈ R3N×F is its weight
matrix. By reshaping and reordering axes, we can interpret
the matrix W as an infinite set of Wi ∈ R3×F sub-matrices.
Then, vertex i is given by vi = WiX. Thus, for two output
vertices vi and vj infinitesimally close to each other we
have:

ε ≥ |vi − vj |= |WiX−WjX|→ ε′ ≥ |Wi −Wj |, (3)

which means that submatrices Wi form a continuous 2-
manifold on the weights space W ⊂ R3×F . We propose
to parametrize this manifold instead of learning each Wi, as
it would be standard with a MLP. To this end, we need to
define a parametric subspace P as a 2-manifold and learn a
function as fP : P →W such that:

P = {pi | Ei [Y] = ‖Yi − fP (pi)U‖ = 0}, (4)

where fP is the MLP mapping from pi to Wi, Yi is a
3D point on the ground truth outfit surface and Ei is the
expected error. This allows training the model as a point
cloud predictor while implicitly enforces these predictions to
follow a 2-manifold in the R3 space. It also removes the need
of an increase on network parameters to predict denser point



Fig. 1: Model pipeline. Dimensions are shown in brackets. Left part: RGB channels are convolved to obtain per-pixel
high-level features. Normalized pixel coordinates (XY) are processed by 1× 1 convolutions to increase the dimensionality.
The output of both branches is concatenated and encoded as a point cloud following Eq. 1. We apply an additional fully
connected layer per point to the concatenation of visual and spatial features before max pooling the whole point cloud.
This yields a global image embedding. Right part: an MLP extracts submatrices W from the parametric subspace (human
body) as explained in Sec. III-B. These submatrices map the image embedding to the offsets connecting skin-to-cloth for
each body point sampled. The same approach estimates the mask (for different garments) and color. Finally, with estimated
SMPL parameters we obtain final predictions by skinning the body with offsets and mask.

clouds. One can train the model with point clouds of size N
and predict point clouds or meshes of size K >> N during
inference by sampling more points from P . To the best of our
knowledge, we are the first to propose a parametrized fully
connected layer to predict analytical surfaces. Note that we
omit biases for simplicity.

Parametric Subspace. From Eq. 3 we can further con-
clude that the submatrix space also has the same topology as
the predicted garments. Therefore, it is important to choose
a parametric subspace P that also follows this topology. In
the current literature we often see works that rely on the
assumption that cloth follows body topology [4], [5], [6],
[17], [20], [25], [30], [37]. While this might not be accurate
for all possible garments, reported results show it is a valid
assumption that simplifies the problem. Another trend in this
domain is to learn garments in rest pose and later leverage
SMPL skinning to obtain posed garments. We define the
parametric subspace P as the body surface in rest pose and
learn the mapping of each skin point to the submatrix that
yields the corresponding unposed garment vertex location for
a given image embedding. We further simplify the problem
by predicting an offset from pi (body surface) to the garment
instead of absolute vertex locations.

Point sampling. For each training step, we sample a
different set of points pi from the body surface P . Given a
triangulated body mesh, this is done by randomly generating
valid barycentric coordinates ω ∈ RN×3 and sampling N
face indices from a weighted distribution proportional to each
face area. These weights ω allow interpolation of any vertex
property: location, normals, UV map coordinates and blend
weights (for posterior skinning), among others. This standard
interpolation is computed for the i-th face as:

pi =

3∑
j

ωij · vtij , (5)

where t ∈ ZN×3 is the set of triangular face indices and v is
the set of body mesh vertices (location plus extra properties).
In practice, we want to use different body shapes, and

therefore, sampling vertex location alone can be ambiguous.
Different surface points of different body shapes can share
location, and will therefore be mapped to the same submatrix.
To help the network resolve this ambiguity, we concatenate
point location (R3), surface normal (R3) and blend weights
(R24 which can be understood as an skeleton based coordi-
nate system). Therefore, the parametric subspace P is defined
as a 2-manifold in the R30 space. We remove head, hands and
feet from the subspace prior to the sampling. The sampled
blend weights are later used for skinning garments along the
body. This sampling strategy yields a matrix P ⊂ P .

Body mask and color. Following the methodology ex-
plained above, a garment surface is sampled along the whole
body. This forces the network to learn non-homogeneous
large offsets from body areas far from real outfit surface,
for instance by sampling from lower leg to predict a short
skirt. This causes a slower convergence and noisy predic-
tions. We propose overcoming this by learning a continuous
mask through the body surface conditioned on the image
embedding. The presented methodology can be adapted to
predict a single value mi representing a mask for each pi. As
ground truth for this mask, we compute 2 nearest neighbours
from the whole outfit in rest pose (provided in the dataset)
against all sampled body points pi. Then, mi = 1 if matched
with an outfit vertex, otherwise, mi = 0. Note this works best
if outfit vertices outnumber points P.

Finally, we want to also predict textured/colored garments.
Once again, we follow the same methodology to predict RGB
color ci ∈ R3 for each point pi. Ground truth is obtained by
assigning to each pi the color of the closest point in the outfit
in rest pose (garment UV map and texture/color provided).

SMPL Skirt. For skirts and dresses, this approach fails,
since skirt-like garments do not closely follow the body
topology. We propose to use a different parametric subspace
for these garments. We append a skirt-like shape to the waist
of SMPL model and assign blend weights such that it follows
root joint orientation (legs relative motion w.r.t. skirt is too
noisy). Fig. 2 shows the proposed SMPL modification. In
this case, we remove the legs before sampling (plus head



Fig. 2: Proposed SMPL modification. Skirts and dresses do
not follow body topology. We deal with this by using a
modified body as the parametric subspace for skirts/dresses.

and hands). During training we choose body topology (skirt-
like or not) based on ground truth outfit type. To be able
to apply this strategy at inference time, we train a binary
topology classifier (skirt-like or not) on the input RGBA
sample (details in Sec. IV-B).

Final prediction. Combining the predictions for offsets,
mask and RGB color yields unposed textured outfits. To
compute the final vertex locations we need to predict as well
SMPL parameters. We do so by an standard regression from
image embeddings U learnt with an L2 loss on predicted
SMPL joints and body mesh vertices. With an estimation of
pose, shape and gender, we perform an skinning w.r.t. SMPL
skeleton for the predicted garment points.

C. Training

Training can be tackled as a point cloud reconstruction
problem. We use the point sampling strategy explained
before to sample not only from the body as parameters P,
but also from the ground truth garment meshes in order
to obtain uniform 3D labels, to ease the implementation.
Therefore, the inputs of the network consist of an image
I ∈ Rw×h×5, as a result of concatenating RGB channels
with normalized pixel coordinates (Eq. 2), an image mask
M ∈ {0, 1}w×h, obtained by binarizing the alpha channel,
and the parametric points P ∈ RN×30. From I and M,
we extract the image embedding U ∈ RF , and from the
parameters P we obtain the set of WXY Z ∈ RN×3×F for
vertex locations, WM ∈ RN×1×F for the predicted body
surface mask or WRGB ∈ RN×3×F for point color. We
train a different CNN to obtain image embeddings specifics
for each task.

In the current literature we find Chamfer Distance loss
(CD) and Earth Moving Distance (EMD) as valid candidates
for 3D garment prediction. It is showed EMD abilities to
predict more uniform point clouds with less outliers thanks to
the one-to-one correspondence under which it is formulated.
Nonetheless, due to the construction of our model as a
parametric 3D surface predictor and the uniform sampling in
the parametric subspace, CD already achieves uniform pre-
dictions and no outliers. Furthermore, CD implementation is
much simpler and allows masking out distances as required.
We choose a masked CD to train our model as:

LCD =
∑

y′
i∈Y′

M

min
yj∈Y

‖y′i − yj‖
2

2 +
∑
yj∈Y

min
y′
i∈Y′

M

‖y′i − yj‖
2

2 ,

(6)

Fig. 3: Our proposed smooth loss leverages the differential
geometry of the predicted surfaces to enforce smoothness by
penalizing its second derivatives. Left: before smoothness,
right: after smoothness.

where y′i ∈ Y′m is the i-th predicted point after masking,
yj ∈ Y is the j-th ground truth point. This loss will be
back-propagated through the skinning performed to obtain
Y′, which allows implicit learning of unposed deformations.
To learn mask and color, ground truth is computed for each
point pi ∈ P, and therefore the model can be trained with
regular L1 for the mask and L2 for the color.

Due to higher cloth dynamics complexity of skirt-like gar-
ments, CD becomes sensitive to incorrect matches between
ground truth garments Y and predictions Y′. Empirically, we
observed noisy and highly distorted predictions. We regular-
ize this behaviour by leveraging the analytical nature of our
predictions. Given a fixed image embedding U, predicted
garments are parametrized surfaces as Y′U = {y′U(p) =
fXY Z(p)U ∀p ∈ P | fM (p)U > 0}, where fXY Z : p→
WXY Z and fM : p → WM . In Eq. 5 we describe p as
a function of barycentric weights ω, therefore, y′U(p(ω)) =
y′U(ω). Predictions have a differential geometry since y′U(ω)
is differentiable almost everywhere. This allows us to define
the following surface regularization term:

Lsmooth =

P∑
p

∂2y′U
∂ω2

(p), (7)

which enforces locally smooth predictions, and implicitly
yields more uniform surfaces. This loss term discourages
the network from generating highly distorted garments to
minimize CD. Differential geometry is a significant novelty
that appears as a direct result of our proposed formulation.
We apply LCD + 0.01Lsmooth as final loss.

IV. EXPERIMENTS

In this section we explain the results achieved through the
proposed methodology.

A. Dataset

We evaluate our approach on CLOTH3D++ dataset
[21]. This dataset is created by realistic renderings of
CLOTH3D [5] (purely 3D sequences of dressed human
performing actions) through an unbiased ray-tracing engine
and PBR materials for the different fabrics. Additionally,
garments are randomly textured or colored to present high
visual variability. Renderings are given as RGBA videos,
where alpha channel can be used as masks for the subject
in the video. CLOTH3D++ contains around 8000 different
subjects and oufits, and over 2M different frames and poses.



TABLE I: Comparison of standard CNN and proposed CNN-
PointNet for the RGB part.

N. params Epoch time CD loss
VGG-16 208M 4h 0.046
Ours 1M 1.5h 0.029

For evaluation, we follow the protocol presented by the au-
thors. We choose CLOTH3D++ due to its size and variability
in terms of outfits and garment topologies. Additionally,
CLOTH3D++ provides of a segmentation mask as the alpha
channel.

B. Setup

We train our model with an initial batch size of 8 samples
incremented by a factor of 2 every two epochs up to 256. We
train the network for 10 epochs with an initial set of 50000
samples. Afterwards, we finetune during 2 more epochs
using all the data and a batch size of 256. To train the
offsets and color, we use the obtained ground truth body
mask to compute the loss. This speeds up convergence.
For the offsets we additionally provide ground truth SMPL
parameters during training. Otherwise, the model tries to
correct the error due to pose and shape through these
offsets, which yields unrealistic predictions on test time. As
mentioned in Sec. III-B, skirt-like garments have a different
parametric subspace than trousers. Therefore, we train two
different models for these two garment types (skirt-like or
not). Then, at inference time, to select the corresponding
trained model, we apply an independent classifier to identify
skirt and dresses from single RGB images. To do so, we
train PSPNet [39] to semantically segment the garments and
body. Afterwards, to classify garments, we average estimated
garment probabilities per pixel, multiply them with garment
pixel ratio and sort them. Then we select winner classes
based on a top-down strategy, e.g. a jumpsuit and dress can
not co-occur. By this strategy, 2-class garment classification
is predicted by 97% accuracy at inference time.

C. Evaluation metric

We evaluate predicted outfit surface using Surface-to-
Surface distance (S2S), an extension of CD as proposed in
[21]. It is computed based on the nearest face rather than
nearest vertex.

We also use the following metrics: average per vertex
Euclidean error in mm for SMPL body surface, F1 score for
classification of six garment categories, and the percentage
of correctly selected vertices for outfit vertex mask.

D. Ablation study

CNN-PointNet. To show the benefits of the proposed
CNN-PointNet for RGB, we train a model to learn to regress
a N = 2000 garment point cloud with a standard CNN and
CNN-PointNet. For the standard CNN we choose a VGG-16
and apply the image alpha channel at the feature volume of
each convolutional block. Tab. I shows a much higher CNN-
PointNet performance after 10 epochs regarding number of
parameters, training time and CD reconstruction loss.

TABLE II: Ablation study. S2S error per garment shows
smoothness regularization greatly improve the results on all
garment categories. We additionally include results obtained
with CLOTH3D++ baselines[21] and SMPLicit[9] for com-
parison. Errors in millimeters.

Top T-shirt Trousers Jumpsuit Skirt Dress All
Ours 8.0 12.4 10.5 10.3 9.5 8.7 9.9

Ours (Eq. 7) 6.3 11.4 9.2 8.5 8.1 7.5 8.6
Baseline[21] 23.9 43.3 40.6 22.1 32.8 29.3 31.3
SMPLicit[9] 41.4 36.2 31.8 - 68.1 - 42.9

Smoothness loss. Fine-tuning our models with the
smoothness term Lsmooth greatly improves the quality of the
predicted surface for all garments. One can see the impact of
the smoothness regularization per garment category in Tab.
II. Fig. 3 shows the qualitative improvement on two different
validation samples after just a few tens of training steps. The
effect of this loss is specially visible for long dresses and
skirts.

Tab. III shows ablation results for SMPL body surface,
mask prediction accuracy, garment classification, and effect
of Eq. 7 regularizer on surface reconstruction quality. Next,
we analyse these results on different subsets of the test set:
seen vs. unseen pose, texture pattern vs. plain color.

Body surface error (2nd row in Tab. III). Our simple
SMPL pose and shape parameter estimation from embedded
parametric subspace has an error of 80.6mm on body surface
vertices, being slightly higher for unseen poses and texture
patterns compared to seen poses and plain color, respectively.

Mask and garment classification accuracy (3rd-4th
rows in Tab. III). Mask and garment classification based
on semantic segmentation and vertex masking show good
performance, specially on seen pose and plain color subsets.

Outfit surface error (5th-6th rows in Tab. III). Outfit
surface error is more dependent on the body pose than
image texture. The S2S error on unseen poses is significantly
higher than seen poses, while the error is slightly higher on
texture patterns than plain color. The use of the smoothing
regularizer consistently reduces the error in all cases.

Qualitative. Fig. 4 shows predictions from our model.
Each of them corresponds to a single RGBA frame. While
the models was trained with just a few thousands of points
per sample, these visualizations contain tens of thousands
of points (we can sample any arbitrary amount of points
during inference). We observe that the main limitation of
our model is in the capturing of colored patterns. As it
can be seen in the figure, our model is able to predict
mainly plain colors. Nonetheless, it shows to be able to
predict correctly different colors for upper and lower body
garments. We take advantage of this to split predictions into
upper and lower by thresholding the gradient of the color
w.r.t. the sampled barycentric weights (Eq. 5). That is, we
complement the predicted mask with an additional one as
M′ = {p ∈ P | ∂cU/∂ω < ε}, where cU is the parametric
expression of the color for a given image embedding U. This
process removes from the prediction those points where there



Fig. 4: Qualitative results of our model from single frames. For each sample, we show the RGBA frame (left) and the 3D
prediction with color (right). Subjects size is proportional to its corresponding size in the RGBA frame in pixels.

TABLE III: Ablation results for SMPL body surface, mask prediction accuracy, garment classification, and effect of Eq. 7
regularizer on surface reconstruction quality.

Seen pose Unseen pose Texture pattern Plain color All
Body surface error (mm) 78.1 88.4 81.5 78.8 80.6

Mask accuracy (%) 95.2 86.7 92.0 94.4 93.1
Garment classification accuracy (F1) 0.92 0.86 0.89 0.97 0.90

Outfit surface error w/o regularization (S2S, mm) 8.4 14.8 10.0 9.7 9.9
Outfit surface error with regularization (S2S, mm) 7.0 13.2 8.5 8.2 8.6

Fig. 5: Results obtained with SMPLicit. While predictions
are consistent in terms of pose and garment type, we observe
significant differences in terms of body shape, garment size
and geometry.

is a sudden change in color.

E. State-of-the-art comparison

We first compare our approach against the baselines pro-
posed by CLOTH3D++ authors[21]. Results are presented
in Tab. II in a per-garment type fashion. As observed,

our approach shows a significant improvement w.r.t. the
CLOTH3D++ baselines. We believe most of this improve-
ment comes from a more accurate topology prediction, which
has a high impact on the S2S metric. Also, due to the use of a
specific model and rigging for the skirt. While CLOTH3D++
baseline attaches the skirts to the legs, producing distorted
artifacts in the predictions.

We also compare our approach against the work of [9].
Similar to our methodology, SMPLicit allows handling a
great variability of garments with different topologies. To this
end, they propose the use of implicit surfaces for garment
representation, inspired in [24]. Similarly, when applied
for inference to images, a search for a latent code –from
which the implicit surface is computed– is performed as
an optimization problem. Note how direct inference already
has advantages over optimization based problems in terms
of efficiency and applicability. Moreover, implicit surfaces
require marching cubes algorithm to extract the predictions
as a 3D mesh, this further increases computational cost.
Due to the computational overhead, computing predictions
for CLOTH3D test set using SMPLicit is unfeasible, thus,
we do this for a representative subset of data. Tab. II
presents the quantitative results obtained. As observed, the



error for the predictions obtained with SMPLicit is larger
than our methodology. Fig. 5 depicts qualitative results
to better understand the numerical error. As can be seen,
SMPLicit predictions are accurate in terms of pose and
garment types. Nonetheless, garment size and geometry do
not fully correspond to the image. Furthermore, seems like
SMPLicit is limited to overly smoothed surfaces. Also, note
how our approach allows predicting color as well and it is
potentially scalable to other surface properties. Nonetheless,
on the other hand, our approach is designed for images with
alpha channel as input, while SMPLicit does not have this
requirement.

V. CONCLUSIONS

We presented a novel architecture for RGBA to 3D gar-
ment reconstruction. We proposed a parametrization of a
fully connected layer to explicitly predict analytical surfaces.
We showed how this can be beneficial during training by
exploiting the differential geometry of the predictions. This
also allows predictions as dense as desired at inference time.
Compared to other approaches, the proposed method has less
computational requirements, being the number of parameters
of the network decoupled from the dimensionality of the
predictions. We also showed how our approach can be used
for color prediction, albeit it cannot capture complex color
patterns. We believe this to be a possible future research line.
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