toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gerard Canal; Cecilio Angulo; Sergio Escalera edit   pdf
url  doi
openurl 
  Title (down) Gesture based Human Multi-Robot interaction Type Conference Article
  Year 2015 Publication IEEE International Joint Conference on Neural Networks IJCNN2015 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The emergence of robot applications for nontechnical users implies designing new ways of interaction between robotic platforms and users. The main goal of this work is the development of a gestural interface to interact with robots
in a similar way as humans do, allowing the user to provide information of the task with non-verbal communication. The gesture recognition application has been implemented using the Microsoft’s KinectTM v2 sensor. Hence, a real-time algorithm based on skeletal features is described to deal with both, static
gestures and dynamic ones, being the latter recognized using a weighted Dynamic Time Warping method. The gesture recognition application has been implemented in a multi-robot case.

A NAO humanoid robot is in charge of interacting with the users and respond to the visual signals they produce. Moreover, a wheeled Wifibot robot carries both the sensor and the NAO robot, easing navigation when necessary. A broad set of user tests have been carried out demonstrating that the system is, indeed, a
natural approach to human robot interaction, with a fast response and easy to use, showing high gesture recognition rates.
 
  Address Killarney; Ireland; July 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IJCNN  
  Notes HuPBA;MILAB Approved no  
  Call Number CAE2015a Serial 2651  
Permanent link to this record
 

 
Author Victor Ponce; Hugo Jair Escalante; Sergio Escalera; Xavier Baro edit   pdf
url  doi
openurl 
  Title (down) Gesture and Action Recognition by Evolved Dynamic Subgestures Type Conference Article
  Year 2015 Publication 26th British Machine Vision Conference Abbreviated Journal  
  Volume Issue Pages 129.1-129.13  
  Keywords  
  Abstract This paper introduces a framework for gesture and action recognition based on the evolution of temporal gesture primitives, or subgestures. Our work is inspired on the principle of producing genetic variations within a population of gesture subsequences, with the goal of obtaining a set of gesture units that enhance the generalization capability of standard gesture recognition approaches. In our context, gesture primitives are evolved over time using dynamic programming and generative models in order to recognize complex actions. In few generations, the proposed subgesture-based representation
of actions and gestures outperforms the state of the art results on the MSRDaily3D and MSRAction3D datasets.
 
  Address Swansea; uk; September 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference BMVC  
  Notes HuPBA;MV Approved no  
  Call Number Admin @ si @ PEE2015 Serial 2657  
Permanent link to this record
 

 
Author Oriol Pujol; David Masip edit  doi
openurl 
  Title (down) Geometry-Based Ensembles: Toward a Structural Characterization of the Classification Boundary Type Journal Article
  Year 2009 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 31 Issue 6 Pages 1140–1146  
  Keywords  
  Abstract This article introduces a novel binary discriminative learning technique based on the approximation of the non-linear decision boundary by a piece-wise linear smooth additive model. The decision border is geometrically defined by means of the characterizing boundary points – points that belong to the optimal boundary under a certain notion of robustness. Based on these points, a set of locally robust linear classifiers is defined and assembled by means of a Tikhonov regularized optimization procedure in an additive model to create a final lambda-smooth decision rule. As a result, a very simple and robust classifier with a strong geometrical meaning and non-linear behavior is obtained. The simplicity of the method allows its extension to cope with some of nowadays machine learning challenges, such as online learning, large scale learning or parallelization, with linear computational complexity. We validate our approach on the UCI database. Finally, we apply our technique in online and large scale scenarios, and in six real life computer vision and pattern recognition problems: gender recognition, intravascular ultrasound tissue classification, speed traffic sign detection, Chagas' disease severity detection, clef classification and action recognition using a 3D accelerometer data. The results are promising and this paper opens a line of research that deserves further attention  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes OR;HuPBA;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ PuM2009 Serial 1252  
Permanent link to this record
 

 
Author Sergio Vera; Debora Gil; Agnes Borras; Marius George Linguraru; Miguel Angel Gonzalez Ballester edit   pdf
url  doi
openurl 
  Title (down) Geometric Steerable Medial Maps Type Journal Article
  Year 2013 Publication Machine Vision and Applications Abbreviated Journal MVA  
  Volume 24 Issue 6 Pages 1255-1266  
  Keywords Medial Representations ,Medial Manifolds Comparation , Surface , Reconstruction  
  Abstract In order to provide more intuitive and easily interpretable representations of complex shapes/organs, medial manifolds should reach a compromise between simplicity in geometry and capability for restoring the anatomy/shape of the organ/volume. Existing morphological methods show excellent results when applied to 2D objects, but their quality drops across dimensions.
This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial manifolds that avoids degenerated medial axis segments. Second, we introduce a continuous operator for accurate and efficient computation of medial structures of arbitrary dimension. We evaluate quantitatively the performance of our method with respect to existing approaches, by applying them to syn- thetic shapes of known medial geometry. We also show its higher performance for medical imaging applications in terms of simplicity of medial structures and capability for reconstructing the anatomical volume.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor Mubarak Shah  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0932-8092 ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 605.203; 600.060; 600.044 Approved no  
  Call Number IAM @ iam @ VGB2013 Serial 2192  
Permanent link to this record
 

 
Author Debora Gil edit   pdf
isbn  openurl
  Title (down) Geometric Differential Operators for Shape Modelling Type Book Whole
  Year 2004 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Medical imaging feeds research in many computer vision and image processing fields: image filtering, segmentation, shape recovery, registration, retrieval and pattern matching. Because of their low contrast changes and large variety of artifacts and noise, medical imaging processing techniques relying on an analysis of the geometry of image level sets rather than on intensity values result in more robust treatment. From the starting point of treatment of intravascular images, this PhD thesis ad- dresses the design of differential image operators based on geometric principles for a robust shape modelling and restoration. Among all fields applying shape recovery, we approach filtering and segmentation of image objects. For a successful use in real images, the segmentation process should go through three stages: noise removing, shape modelling and shape recovery. This PhD addresses all three topics, but for the sake of algorithms as automated as possible, techniques for image processing will be designed to satisfy three main principles: a) convergence of the iterative schemes to non-trivial states avoiding image degeneration to a constant image and representing smooth models of the originals; b) smooth asymptotic behav- ior ensuring stabilization of the iterative process; c) fixed parameter values ensuring equal (domain free) performance of the algorithms whatever initial images/shapes. Our geometric approach to the generic equations that model the different processes approached enables defining techniques satisfying all the former requirements. First, we introduce a new curvature-based geometric flow for image filtering achieving a good compromise between noise removing and resemblance to original images. Sec- ond, we describe a new family of diffusion operators that restrict their scope to image level curves and serve to restore smooth closed models from unconnected sets of points. Finally, we design a regularization of snake (distance) maps that ensures its smooth convergence towards any closed shape. Experiments show that performance of the techniques proposed overpasses that of state-of-the-art algorithms.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Barcelona (Spain) Editor Jordi Saludes i Closa;Petia Radeva  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 84-933652-0-3 Medium prit  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ GIL2004 Serial 1517  
Permanent link to this record
 

 
Author Edgar Riba edit  openurl
  Title (down) Geometric Computer Vision Techniques for Scene Reconstruction Type Book Whole
  Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract From the early stages of Computer Vision, scene reconstruction has been one of the most studied topics leading to a wide variety of new discoveries and applications. Object grasping and manipulation, localization and mapping, or even visual effect generation are different examples of applications in which scene reconstruction has taken an important role for industries such as robotics, factory automation, or audio visual production. However, scene reconstruction is an extensive topic that can be approached in many different ways with already existing solutions that effectively work in controlled environments. Formally, the problem of scene reconstruction can be formulated as a sequence of independent processes which compose a pipeline. In this thesis, we analyse some parts of the reconstruction pipeline from which we contribute with novel methods using Convolutional Neural Networks (CNN) proposing innovative solutions that consider the optimisation of the methods in an end-to-end fashion. First, we review the state of the art of classical local features detectors and descriptors and contribute with two novel methods that inherently improve pre-existing solutions in the scene reconstruction pipeline.

It is a fact that computer science and software engineering are two fields that usually go hand in hand and evolve according to mutual needs making easier the design of complex and efficient algorithms. For this reason, we contribute with Kornia, a library specifically designed to work with classical computer vision techniques along with deep neural networks. In essence, we created a framework that eases the design of complex pipelines for computer vision algorithms so that can be included within neural networks and be used to backpropagate gradients throw a common optimisation framework. Finally, in the last chapter of this thesis we develop the aforementioned concept of designing end-to-end systems with classical projective geometry. Thus, we contribute with a solution to the problem of synthetic view generation by hallucinating novel views from high deformable cloths objects using a geometry aware end-to-end system. To summarize, in this thesis we demonstrate that with a proper design that combine classical geometric computer vision methods with deep learning techniques can lead to improve pre-existing solutions for the problem of scene reconstruction.
 
  Address February 2021  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor Daniel Ponsa  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ Rib2021 Serial 3610  
Permanent link to this record
 

 
Author Marçal Rusiñol edit  openurl
  Title (down) Geometric and Structural-based Symbol Spotting. Application to Focused Retrieval in Graphic Document Collections Type Book Whole
  Year 2009 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Usually, pattern recognition systems consist of two main parts. On the one hand, the data acquisition and, on the other hand, the classification of this data on a certain category. In order to recognize which category a certain query element belongs to, a set of pattern models must be provided beforehand. An off-line learning stage is needed to train the classifier and to offer a robust classification of the patterns. Within the pattern recognition field, we are interested in the recognition of graphics and, in particular, on the analysis of documents rich in graphical information. In this context, one of the main concerns is to see if the proposed systems remain scalable with respect to the data volume so as it can handle growing amounts of symbol models. In order to avoid to work with a database of reference symbols, symbol spotting and on-the-fly symbol recognition methods have been introduced in the past years.

Generally speaking, the symbol spotting problem can be defined as the identification of a set of regions of interest from a document image which are likely to contain an instance of a certain queriedn symbol without explicitly applying the whole pattern recognition scheme. Our application framework consists on indexing a collection of graphic-rich document images. This collection is
queried by example with a single instance of the symbol to look for and, by means of symbol spotting methods we retrieve the regions of interest where the symbol is likely to appear within the documents. This kind of applications are known as focused retrieval methods.

In order that the focused retrieval application can handle large collections of documents there is a need to provide an efficient access to the large volume of information that might be stored. We use indexing strategies in order to efficiently retrieve by similarity the locations where a certain part of the symbol appears. In that scenario, graphical patterns should be used as indices for accessing and navigating the collection of documents.
These indexing mechanism allow the user to search for similar elements using graphical information rather than textual queries.

Along this thesis we present a spotting architecture and different methods aiming to build a complete focused retrieval application dealing with a graphic-rich document collections. In addition, a protocol to evaluate the performance of symbol
spotting systems in terms of recognition abilities, location accuracy and scalability is proposed.
 
  Address Barcelona (Spain)  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Josep Llados  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ Rus2009 Serial 1264  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Felipe Lumbreras; Theo Gevers; Antonio Lopez edit   pdf
url  doi
openurl 
  Title (down) Geographic Information for vision-based Road Detection Type Conference Article
  Year 2010 Publication IEEE Intelligent Vehicles Symposium Abbreviated Journal  
  Volume Issue Pages 621–626  
  Keywords road detection  
  Abstract Road detection is a vital task for the development of autonomous vehicles. The knowledge of the free road surface ahead of the target vehicle can be used for autonomous driving, road departure warning, as well as to support advanced driver assistance systems like vehicle or pedestrian detection. Using vision to detect the road has several advantages in front of other sensors: richness of features, easy integration, low cost or low power consumption. Common vision-based road detection approaches use low-level features (such as color or texture) as visual cues to group pixels exhibiting similar properties. However, it is difficult to foresee a perfect clustering algorithm since roads are in outdoor scenarios being imaged from a mobile platform. In this paper, we propose a novel high-level approach to vision-based road detection based on geographical information. The key idea of the algorithm is exploiting geographical information to provide a rough detection of the road. Then, this segmentation is refined at low-level using color information to provide the final result. The results presented show the validity of our approach.  
  Address San Diego; CA; USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IV  
  Notes ADAS;ISE Approved no  
  Call Number ADAS @ adas @ ALG2010 Serial 1428  
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera edit   pdf
doi  openurl
  Title (down) Generic Subclass Ensemble: A Novel Approach to Ensemble Classification Type Conference Article
  Year 2014 Publication 22nd International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 1254 - 1259  
  Keywords  
  Abstract Multiple classifier systems, also known as classifier ensembles, have received great attention in recent years because of their improved classification accuracy in different applications. In this paper, we propose a new general approach to ensemble classification, named generic subclass ensemble, in which each base classifier is trained with data belonging to a subset of classes, and thus discriminates among a subset of target categories. The ensemble classifiers are then fused using a combination rule. The proposed approach differs from existing methods that manipulate the target attribute, since in our approach individual classification problems are not restricted to two-class problems. We perform a series of experiments to evaluate the efficiency of the generic subclass approach on a set of benchmark datasets. Experimental results with multilayer perceptrons show that the proposed approach presents a viable alternative to the most commonly used ensemble classification approaches.  
  Address Stockholm; August 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN Medium  
  Area Expedition Conference ICPR  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ BGE2014b Serial 2445  
Permanent link to this record
 

 
Author Xavier Baro; Sergio Escalera; Petia Radeva; Jordi Vitria edit  doi
isbn  openurl
  Title (down) Generic Object Recognition in Urban Image Databases Type Conference Article
  Year 2009 Publication 12th International Conference of the Catalan Association for Artificial Intelligence Abbreviated Journal  
  Volume 202 Issue Pages 27-34  
  Keywords  
  Abstract In this paper we propose the construction of a visual content layer which describes the visual appearance of geographic locations in a city. We captured, by means of a Mobile Mapping system, a huge set of georeferenced images (>500K) which cover the whole city of Barcelona. For each image, hundreds of region descriptions are computed off-line and described as a hash code. All this information is extracted without an object of reference, which allows to search for any type of objects using their visual appearance. A new Visual Content layer is built over Google Maps, allowing the object recognition information to be organized and fused with other content, like satellite images, street maps, and business locations.  
  Address Cardona (Spain)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-60750-061-2 Medium  
  Area Expedition Conference CCIA  
  Notes OR;MILAB;HuPBA;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ VER2009 Serial 1183  
Permanent link to this record
 

 
Author Santiago Segui; Michal Drozdzal; Guillem Pascual; Petia Radeva; Carolina Malagelada; Fernando Azpiroz; Jordi Vitria edit   pdf
url  openurl
  Title (down) Generic Feature Learning for Wireless Capsule Endoscopy Analysis Type Journal Article
  Year 2016 Publication Computers in Biology and Medicine Abbreviated Journal CBM  
  Volume 79 Issue Pages 163-172  
  Keywords Wireless capsule endoscopy; Deep learning; Feature learning; Motility analysis  
  Abstract The interpretation and analysis of wireless capsule endoscopy (WCE) recordings is a complex task which requires sophisticated computer aided decision (CAD) systems to help physicians with video screening and, finally, with the diagnosis. Most CAD systems used in capsule endoscopy share a common system design, but use very different image and video representations. As a result, each time a new clinical application of WCE appears, a new CAD system has to be designed from the scratch. This makes the design of new CAD systems very time consuming. Therefore, in this paper we introduce a system for small intestine motility characterization, based on Deep Convolutional Neural Networks, which circumvents the laborious step of designing specific features for individual motility events. Experimental results show the superiority of the learned features over alternative classifiers constructed using state-of-the-art handcrafted features. In particular, it reaches a mean classification accuracy of 96% for six intestinal motility events, outperforming the other classifiers by a large margin (a 14% relative performance increase).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes OR; MILAB;MV; Approved no  
  Call Number Admin @ si @ SDP2016 Serial 2836  
Permanent link to this record
 

 
Author Josep Famadas; Meysam Madadi; Cristina Palmero; Sergio Escalera edit   pdf
url  openurl
  Title (down) Generative Video Face Reenactment by AUs and Gaze Regularization Type Conference Article
  Year 2020 Publication 15th IEEE International Conference on Automatic Face and Gesture Recognition Abbreviated Journal  
  Volume Issue Pages 444-451  
  Keywords  
  Abstract In this work, we propose an encoder-decoder-like architecture to perform face reenactment in image sequences. Our goal is to transfer the training subject identity to a given test subject. We regularize face reenactment by facial action unit intensity and 3D gaze vector regression. This way, we enforce the network to transfer subtle facial expressions and eye dynamics, providing a more lifelike result. The proposed encoder-decoder receives as input the previous sequence frame stacked to the current frame image of facial landmarks. Thus, the generated frames benefit from appearance and geometry, while keeping temporal coherence for the generated sequence. At test stage, a new target subject with the facial performance of the source subject and the appearance of the training subject is reenacted. Principal component analysis is applied to project the test subject geometry to the closest training subject geometry before reenactment. Evaluation of our proposal shows faster convergence, and more accurate and realistic results in comparison to other architectures without action units and gaze regularization.  
  Address Virtual; November 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FG  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ FMP2020 Serial 3517  
Permanent link to this record
 

 
Author Akshita Gupta; Sanath Narayan; Salman Khan; Fahad Shahbaz Khan; Ling Shao; Joost Van de Weijer edit  doi
openurl 
  Title (down) Generative Multi-Label Zero-Shot Learning Type Journal Article
  Year 2023 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 45 Issue 12 Pages 14611-14624  
  Keywords Generalized zero-shot learning; Multi-label classification; Zero-shot object detection; Feature synthesis  
  Abstract Multi-label zero-shot learning strives to classify images into multiple unseen categories for which no data is available during training. The test samples can additionally contain seen categories in the generalized variant. Existing approaches rely on learning either shared or label-specific attention from the seen classes. Nevertheless, computing reliable attention maps for unseen classes during inference in a multi-label setting is still a challenge. In contrast, state-of-the-art single-label generative adversarial network (GAN) based approaches learn to directly synthesize the class-specific visual features from the corresponding class attribute embeddings. However, synthesizing multi-label features from GANs is still unexplored in the context of zero-shot setting. When multiple objects occur jointly in a single image, a critical question is how to effectively fuse multi-class information. In this work, we introduce different fusion approaches at the attribute-level, feature-level and cross-level (across attribute and feature-levels) for synthesizing multi-label features from their corresponding multi-label class embeddings. To the best of our knowledge, our work is the first to tackle the problem of multi-label feature synthesis in the (generalized) zero-shot setting. Our cross-level fusion-based generative approach outperforms the state-of-the-art on three zero-shot benchmarks: NUS-WIDE, Open Images and MS COCO. Furthermore, we show the generalization capabilities of our fusion approach in the zero-shot detection task on MS COCO, achieving favorable performance against existing methods.  
  Address December 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; PID2021-128178OB-I00 Approved no  
  Call Number Admin @ si @ Serial 3853  
Permanent link to this record
 

 
Author Xialei Liu; Chenshen Wu; Mikel Menta; Luis Herranz; Bogdan Raducanu; Andrew Bagdanov; Shangling Jui; Joost Van de Weijer edit   pdf
openurl 
  Title (down) Generative Feature Replay for Class-Incremental Learning Type Conference Article
  Year 2020 Publication CLVISION – Workshop on Continual Learning in Computer Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Humans are capable of learning new tasks without forgetting previous ones, while neural networks fail due to catastrophic forgetting between new and previously-learned tasks. We consider a class-incremental setting which means that the task-ID is unknown at inference time. The imbalance between old and new classes typically results in a bias of the network towards the newest ones. This imbalance problem can either be addressed by storing exemplars from previous tasks, or by using image replay methods. However, the latter can only be applied to toy datasets since image generation for complex datasets is a hard problem.
We propose a solution to the imbalance problem based on generative feature replay which does not require any exemplars. To do this, we split the network into two parts: a feature extractor and a classifier. To prevent forgetting, we combine generative feature replay in the classifier with feature distillation in the feature extractor. Through feature generation, our method reduces the complexity of generative replay and prevents the imbalance problem. Our approach is computationally efficient and scalable to large datasets. Experiments confirm that our approach achieves state-of-the-art results on CIFAR-100 and ImageNet, while requiring only a fraction of the storage needed for exemplar-based continual learning
 
  Address Virtual CVPR  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes LAMP; 601.309; 602.200; 600.141; 600.120 Approved no  
  Call Number Admin @ si @ LWM2020 Serial 3419  
Permanent link to this record
 

 
Author Mathieu Nicolas Delalandre; Ernest Valveny; Tony Pridmore; Dimosthenis Karatzas edit  doi
openurl 
  Title (down) Generation of Synthetic Documents for Performance Evaluation of Symbol Recognition & Spotting Systems Type Journal Article
  Year 2010 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 13 Issue 3 Pages 187-207  
  Keywords  
  Abstract This paper deals with the topic of performance evaluation of symbol recognition & spotting systems. We propose here a new approach to the generation of synthetic graphics documents containing non-isolated symbols in a real context. This approach is based on the definition of a set of constraints that permit us to place the symbols on a pre-defined background according to the properties of a particular domain (architecture, electronics, engineering, etc.). In this way, we can obtain a large amount of images resembling real documents by simply defining the set of constraints and providing a few pre-defined backgrounds. As documents are synthetically generated, the groundtruth (the location and the label of every symbol) becomes automatically available. We have applied this approach to the generation of a large database of architectural drawings and electronic diagrams, which shows the flexibility of the system. Performance evaluation experiments of a symbol localization system show that our approach permits to generate documents with different features that are reflected in variation of localization results.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ DVP2010 Serial 1289  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: