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José M. Alvarez1, Felipe Lumbreras1

1Computer Vision Center and

Computer Science Dpt.

Univ. Autonoma de Barcelona

{jalvarez, felipe, antonio}@cvc.uab.es

Theo Gevers2, Antonio M. López1
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Abstract— Road detection is a vital task for the development
of autonomous vehicles. The knowledge of the free road surface
ahead of the target vehicle can be used for autonomous driving,
road departure warning, as well as to support advanced driver
assistance systems like vehicle or pedestrian detection. Using
vision to detect the road has several advantages in front of
other sensors: richness of features, easy integration, low cost or
low power consumption. Common vision–based road detection
approaches use low–level features (such as color or texture)
as visual cues to group pixels exhibiting similar properties.
However, it is difficult to foresee a perfect clustering algorithm
since roads are in outdoor scenarios being imaged from a mobile
platform. In this paper, we propose a novel high–level approach
to vision–based road detection based on geographical informa-
tion. The key idea of the algorithm is exploiting geographical
information to provide a rough detection of the road. Then, this
segmentation is refined at low–level using color information to
provide the final result. The results presented show the validity
of our approach.

I. INTRODUCTION

Advanced driver assistance systems (ADAS) aim to un-

derstand the environment of the vehicle to the extent of

contributing to traffic safety. The ability to detect the road

ahead the target vehicle is an important task to develop

these assistance systems. Road detection is a challenging

task for machine perception since the system must be able

to learn in a self–supervised manner and adapt to inter- and

intra–class changes in the local environment. During the last

decade, a large number of road following systems have been

developed using either active sensors (i.e., laser and radar),

or passive ones (i.e., monocular or stereo cameras). Using

a single camera capturing scene information from the front

windshield of the vehicle has several advantages: low cost,

richness of features (color, texture), easy aesthetic integration

and non–intrusive nature. However, detecting the road using

a monocular vision–system is very challenging since the

road is an outdoor scenario imaged from a mobile platform.

Thus, the detection algorithm must be able to deal with

continuously changing background, the presence of different

objects (vehicles, pedestrian), different environments (urban,

highways, off–road), different road types (shape, color), and
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different imaging conditions (varying illumination, different

viewpoints and weather conditions).

Current road detection approaches using monocular vision

systems use pixel features such as texture or color as visual

cues for grouping pixels in two different groups: drivable

road or background. However, algorithms based on these

visual cues fail under wide lighting variations (penumbra,

strong cast shadows and highlights or reflections among

others) and these algorithms show dependency on highly

structured roads, road homogeneity, simplified road shapes,

and idealized lighting conditions. Thus, the performance

of these systems is often improved by including temporal

or road shape constraints. For instance, Michalke et al.

[1] include temporal coherence averaging the results of

consecutive frames in an image sequence. Sotelo et al. [2]

include road shape restrictions by modelling the road using

a second order curve. A similar example is found in [3]

where color information is combined with edge information

estimated based on synthetic road curvature models. Road

shape is also included in [4] where road detection results

using texture are classified as one of three different models

(left turn, right turn and straight road). However, all these

approaches use low–level properties to estimate the shape of

the road ahead the target vehicle. That is, road features are

extracted at a pixel level and grouped accordingly.

Our interest in this paper is estimating the geometry of

the road in front of the target vehicle. Road geometry has

been previously computed from images in [5]. Alvarez et al.

use a scene classifier to provide the probability that a road

image contains certain road geometry (left turn, straight, t–

like junction). However, road geometries are learned off–line

using training images. Thus, the algorithm is limited to a

finite number of classes and the road shape is limited to the

shapes in the training images.

In this paper, as a novelty, geographical information is

used to infer the geometry of the road ahead the target vehi-

cle. Geographical information refers to merging cartography

and database technology. Geographical information systems

(GIS) are often associated with a map that shows features and

feature relationships on the Earth’s surface (Fig. 1). Recently,

the wide availability of high–quality location information

combined with affordable global positioning system (GPS)

receivers has enabled mass–market mapping systems. These
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Fig. 2. Block–diagram of the algorithm for computing the road geometry using geographical information.

systems are widely used for vehicle navigation [6], [7], [8]

or visual guidance using augmented reality [9]. Vehicle nav-

igation refers to localizing the vehicle within a map. Visual

guidance using augmented reality refers to superimposing

traffic signal information into on–board images. Hence, none

of these methods can be used for detecting the drivable area

ahead the target vehicle. Therefore, in this paper, geographic

information is exploited using a different approach. The key

idea of the algorithm is detecting the road in images by

projecting road map information provided by the GIS into

the image plane of the on–board camera. The output of the

algorithm is a rough segmentation of the road that is refined

using pixel–level properties to provide the required accuracy.

The rest of this paper is organized as follows. First, in

Sect. II the algorithm to estimate road shape from geographic

information is outlined. Then, in Sect. III, experiments vali-

dating the algorithm are presented and results are discussed.

Finally, conclusions are drawn in Sect. IV.

Fig. 1. Geographic Information Systems store the information necessary
to build a top–view map of specific areas of the Earth’s surface. The
image shows a satellite image of an urban area with superimposed road
information.

II. ROAD GEOMETRY FROM GEOGRAPHICAL

INFORMATION

Road geometry refers to the shape of the road ahead

the target vehicle. Examples of geometries are left turn,

right turn or t-like junction. This contextual information

is crucial for reliable extraction of image regions such as

the road. The key idea for extracting the road geometry

from geographic information systems is projecting the road

information in the database into the image plane of the

on–board camera. The algorithm relies in the information

provided by Geographic Information Systems (GIS). GIS are

database systems that capture, store and manage geographi-

cally referenced information. That is, data which is linked to

location. This information describes the world in geographic

terms representing objects like rivers, lakes or roads) using

simple geometries such as points, polylines or polygons.

The proper combination of these geometries creates a bird’s

view map of an specific region of the Earth (Fig. 1). Road

information is usually associated with additional attributes

such as road name, construction level, direction information

and number of lanes in each direction.

The algorithm devised for detecting the road using ge-

ographical information is shown in Fig. 2. The algorithm

is divided in four main blocks: vehicle localization and

navigation, bird’s view map generation, road shape modelling

and image mapping.

The first block is a GPS–based localization process and its

goal is twofold. First, it provides the current position p of

the vehicle relative to the map database. Second, consecutive

positions of the vehicle are used to estimate the vehicle

orientation in the current frame.

The second block consists in generating the road skeleton

map of the area around the current position. The road map

is modelled as junctions connected by piecewise continuous
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lines. Gaps between consecutive points are filled using cubic

interpolation. As a result, a smoothed trajectory is obtained

(Fig. 3).

The third block consists in modelling the road expading

the road skeleton based on a road model. The road model

consists of a drivable area per lane and two roadsides (Fig.

4). The width of these two parts (road lane WRL and roadside

RRS) is estimated according the road attributes in the database

and additional country’s national road legislation.

Finally, the last block is the image mapping. In this

process, the road geometry ahead the vehicle is obtained

projecting the road map at the vehicle position onto the 2D

driver’s view.

There are different coordinate systems involved in the

mapping process: World Coordinate System (WCS), Vehi-

cle Coordinate System (VCS), Camera Coordinate System

(CCS) and Image Coordinate System (ICS). The relationship

between these coordinate systems is shown in Fig. 5. Accord-

ingly, the mapping process consists in transferring the road

model from VCS to the ICS, using WCS as reference. This

process can be decomposed in a rigid body translation and

rotation between VCS and CCS, and a perspective projection

from CCS to ICS. Then, a set of N points R = [r0,ri, . . . ,rN ]
defining a road segment is mapped from VCS to ICS as

follows,

κ pi = K
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where κ is an arbitrary scale factor, K represents the intrinsic

parameters of the camera [10]. R and t are the extrinsic

camera parameters which relate the camera and vehicle

coordinate systems. The former, R, describes the orientation

(pose) and the latter, t = (tx, ty, tz), describes the translation

(position) of the camera system in a 3D world (Fig. 5).

The intrinsic camera parameters are fixed for the particular

device being used and define pixel coordinates of image

points with respect to coordinates in the camera reference

frame [10],

Fig. 3. Left: bird’s view of the satellite road map with superimposed
green points defining the road skeleton. Right: the road skeleton is obtained
smoothing the road trajectory using cubic interpolation.

K =
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f 0









, (2)

where f is the focal length. That is, the distance from the
optical center to the image plane. Finally, the rotation camera
matrix is decomposed as follows,

R = RpitchRyawRroll ,

Rpitch =





1 0 0
0 cosθ −sinθ
0 sinθ cosθ





,

Ryaw =





cosφ 0 sinφ
0 1 0

−sinφ 0 cosφ





,

Rroll =





cosϕ −sinϕ 0
sinϕ cosϕ 0

0 0 1





,

where φ (roll), θ (pitch), ϕ (yaw) refer to rotations about

the respective axis.

Figure 6 shows different road shapes obtained using the

proposed algorithm. As shown, the shape of the road is

properly recovered at different daytime and in different

situations such as soft and hard turns. The smoothing present

in the road mask is due to a smoothing factor in the roadside

area.

III. EXPERIMENTS

Our proposal for vision–based road detection consists in

refining the road detection results via geographical informa-

tion using pixel–level features. Thus, geographic information

provides a general view of the road ahead the vehicle and

the pixel–based features provide the accuracy required. The

algorithm is depicted in Fig. 8. Given an image and the

GPS signal, the road is detected using GIS as described in

Sect. II. Then, the result is refined to provide the final road

mask. The refinement is performed using color information

of the road pixels in the road geometry mask. Pixels are

characterized using the hue component from the HSI (Hue,

Saturation and Intensity) color space [10] and the chro-

maticity coordinates (u and v) of the perceptually uniform

color space, CIELuv [11]. Hue describes color characteristics

in terms of visual sensation according to perceived colors.

Fig. 4. Road shape model. The model consists in defining the width of
the lane (WRL) and the width of two roadsides (WRS) perpendicular to the
direction of each road segment defining the road skeleton.
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(a) (b) (c) (d)

Fig. 6. Example results of road detection via geographical information. a) Input image. b) Bird’s view of the road map and vehicle localization. c) Road
geometry mask. d) Road geometry mask superimposed in the original image.

Fig. 5. Four coordinate systems are needed for mapping the road
information onto the image plane of the camera: World (WCS), Vehicle
(VCS), Camera (CCS) and Image (ICS) Coordinate Systems. The position
of the camera is defined using a translation t and three rotations about
coordinate axis (roll, pitch and yaw).

That is, hue values are completely different between a red

and a blue car. The CIELuv color space has been widely

used in color image segmentation methods using clustering

techniques [12]. Finally, the refinement consists in discarding

those road pixels for which the Mahalanobis distance to

a chromatic road model is larger than a fixed threshold.

The chromatic road model is built using road pixels of the

geographic mask in the bottom part of the image. Hence,

the algorithm assumes the bottom part of the image belongs

to the road surface. This is a common assumption [2], [13]

since this region of the image corresponds to a distance of

2 meters in front of the target vehicle. Thus, the assumption

is not restrictive if the vehicle keeps a gap with preceding

ones that is safe for driving.

Experiments validating the algorithm are conducted on

images acquired using an onboard camera based on the

Micron MT9V023 sensor. This is a high dynamic range

CMOS sensor of 752×480 pixels and 10 bits per pixels. The

camera is equipped with a 6mm focal length microlens. The

sensor uses Bayer pattern for capturing color information.

Standard Bayer pattern decoding (bilinear interpolation) is

used to obtain a 3–channels color image (RGB) of 752×480
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Fig. 7. GGA NEMEA sentences provide 3D location (latitude, longitude
and altitude).

pixels per channel and 10 bits per pixel.

Each acquired image is geo–referenced (synchronized)

with GPS information (latitude, longitude and altitude) pro-

vided by a standard GPS antenna (Woxter Slim II) using

NMEA protocol [14]. This protocol defines the interface

between different electronic equipment. In this way, NMEA

protocol sends a line of data called sentence that is totally self

contained and independent from other sentences. Standard

sentences for GPS devices have a two letter prefix (GP)

which is followed by a three letter sequence that defines the

sentence contents. For instance, GGA sentences provide 3D

location and accuracy data, see Fig. 7. Each location (latitude

and longitude) is converted to Cartesian coordinates (X, Y,

Z) using the datum 84 (WGS–84). This geodesic datum is

a reference used to describe the localization of points on

the Earth’s surface. The WGS–84 defines the Earth surface

as a pole-flattened (oblate) spheroid, with major (transverse)

radius a = 6.378137m at the equator, and minor (conjugate)

radius b = 6.356752,314m at the poles.

Fig. 8. Algorithm used to validate the vision–based road detection proposal.

The road database is obtained from OpenStreetMap [15].

OpenStreetMap is an opensource database containing ge-

ographical information and roads attributes in XML for-

mat [16]. These attributes comprise features such as type

(motorway, path, trunk, primary road, secondary road), name,

maximum speed, one/two ways [17]. Points describing road

segments are interpolated using cubic interpolation to im-

prove the resolution of the system. Finally, the road model

is parameterized using equivalences in Table I. The rest of

parameters of the algorithm are fixed empirically.

Example results for different images are shown in Fig. 9.

Images contain different road geometries and the presence

of other vehicles in the scene. As shown, the road layout is

TABLE I

ROAD LANE AND ROADSIDE WIDTH EQUIVALENCES USED TO MODEL

THE ROAD.

Road type highway primary secondary residential

WRL 3.75m 3.5m 3.00m 3.00m

WRS 2.5m 1m 1m 0.50m

properly recovered and objects are discarded using chromatic

information. These results suggest that a reliable road seg-

mentation algorithm is obtained by combining geographic

information and a pixel–based refinement. Road surface is

properly recovered most of the time despite lighting condi-

tions and complex road shapes.

The analysis of failures reveals errors in the position-

ing process due to two main causes. The former is the

inherent error in the accuracy of the GPS information.

The latter occurs in urban areas where GPS signals are

often blocked. These errors could be mitigated including

navigation algorithms within the vehicle localization step

and using Real Time Kinematic (RTK) satellite navigation

instead of ’normal’ GPS navigation.

IV. CONCLUSIONS

In this paper, as a novel approach, geographic information

is introduced in the context of road detection. The key idea of

the method is inferring the road geometry ahead the target ve-

hicle using available geographic road databases. Further, the

result obtained is refined using chromatic information at pixel

level. Hence, road geometry from geographic information

provides a rough detection of the road while color provides

the accuracy required to discard other objects present in the

scene (such as vehicles or pedestrians).

In the future, we aim to incorporate navigation algorithms

to minimize the localization error.
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