Javier Vazquez. (2007). Content-based Colour Space.
|
|
Aymen Azaza, Joost Van de Weijer, Ali Douik, & Marc Masana. (2018). Context Proposals for Saliency Detection. CVIU - Computer Vision and Image Understanding, 174, 1–11.
Abstract: One of the fundamental properties of a salient object region is its contrast
with the immediate context. The problem is that numerous object regions
exist which potentially can all be salient. One way to prevent an exhaustive
search over all object regions is by using object proposal algorithms. These
return a limited set of regions which are most likely to contain an object. Several saliency estimation methods have used object proposals. However, they focus on the saliency of the proposal only, and the importance of its immediate context has not been evaluated.
In this paper, we aim to improve salient object detection. Therefore, we extend object proposal methods with context proposals, which allow to incorporate the immediate context in the saliency computation. We propose several saliency features which are computed from the context proposals. In the experiments, we evaluate five object proposal methods for the task of saliency segmentation, and find that Multiscale Combinatorial Grouping outperforms the others. Furthermore, experiments show that the proposed context features improve performance, and that our method matches results on the FT datasets and obtains competitive results on three other datasets (PASCAL-S, MSRA-B and ECSSD).
|
|
Eduardo Aguilar, Bogdan Raducanu, Petia Radeva, & Joost Van de Weijer. (2023). Continual Evidential Deep Learning for Out-of-Distribution Detection. In IEEE/CVF International Conference on Computer Vision (ICCV) Workshops -Visual Continual Learning workshop (pp. 3444–3454).
Abstract: Uncertainty-based deep learning models have attracted a great deal of interest for their ability to provide accurate and reliable predictions. Evidential deep learning stands out achieving remarkable performance in detecting out-of-distribution (OOD) data with a single deterministic neural network. Motivated by this fact, in this paper we propose the integration of an evidential deep learning method into a continual learning framework in order to perform simultaneously incremental object classification and OOD detection. Moreover, we analyze the ability of vacuity and dissonance to differentiate between in-distribution data belonging to old classes and OOD data. The proposed method, called CEDL, is evaluated on CIFAR-100 considering two settings consisting of 5 and 10 tasks, respectively. From the obtained results, we could appreciate that the proposed method, in addition to provide comparable results in object classification with respect to the baseline, largely outperforms OOD detection compared to several posthoc methods on three evaluation metrics: AUROC, AUPR and FPR95.
|
|
Eduardo Aguilar, Bogdan Raducanu, Petia Radeva, & Joost Van de Weijer. (2023). Continual Evidential Deep Learning for Out-of-Distribution Detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops (pp. 3444–3454).
Abstract: Uncertainty-based deep learning models have attracted a great deal of interest for their ability to provide accurate and reliable predictions. Evidential deep learning stands out achieving remarkable performance in detecting out-ofdistribution (OOD) data with a single deterministic neural network. Motivated by this fact, in this paper we propose the integration of an evidential deep learning method into a continual learning framework in order to perform simultaneously incremental object classification and OOD detection. Moreover, we analyze the ability of vacuity and dissonance to differentiate between in-distribution data belonging to old classes and OOD data. The proposed method 1, called CEDL, is evaluated on CIFAR-100 considering two settings consisting of 5 and 10 tasks, respectively. From the obtained results, we could appreciate that the proposed method, in addition to provide comparable results in object classification with respect to the baseline, largely outperforms OOD detection compared to several posthoc methods on three evaluation metrics: AUROC, AUPR and FPR95.
|
|
Kai Wang, Luis Herranz, & Joost Van de Weijer. (2021). Continual learning in cross-modal retrieval. In 2nd CLVISION workshop (pp. 3628–3638).
Abstract: Multimodal representations and continual learning are two areas closely related to human intelligence. The former considers the learning of shared representation spaces where information from different modalities can be compared and integrated (we focus on cross-modal retrieval between language and visual representations). The latter studies how to prevent forgetting a previously learned task when learning a new one. While humans excel in these two aspects, deep neural networks are still quite limited. In this paper, we propose a combination of both problems into a continual cross-modal retrieval setting, where we study how the catastrophic interference caused by new tasks impacts the embedding spaces and their cross-modal alignment required for effective retrieval. We propose a general framework that decouples the training, indexing and querying stages. We also identify and study different factors that may lead to forgetting, and propose tools to alleviate it. We found that the indexing stage pays an important role and that simply avoiding reindexing the database with updated embedding networks can lead to significant gains. We evaluated our methods in two image-text retrieval datasets, obtaining significant gains with respect to the fine tuning baseline.
|
|
Alex Gomez-Villa, Bartlomiej Twardowski, Lu Yu, Andrew Bagdanov, & Joost Van de Weijer. (2022). Continually Learning Self-Supervised Representations With Projected Functional Regularization. In CVPR 2022 Workshop on Continual Learning (CLVision, 3rd Edition) (pp. 3866–3876).
Abstract: Recent self-supervised learning methods are able to learn high-quality image representations and are closing the gap with supervised approaches. However, these methods are unable to acquire new knowledge incrementally – they are, in fact, mostly used only as a pre-training phase over IID data. In this work we investigate self-supervised methods in continual learning regimes without any replay
mechanism. We show that naive functional regularization,also known as feature distillation, leads to lower plasticity and limits continual learning performance. Instead, we propose Projected Functional Regularization in which a separate temporal projection network ensures that the newly learned feature space preserves information of the previous one, while at the same time allowing for the learning of new features. This prevents forgetting while maintaining the plasticity of the learner. Comparison with other incremental learning approaches applied to self-supervision demonstrates that our method obtains competitive performance in
different scenarios and on multiple datasets.
Keywords: Computer vision; Conferences; Self-supervised learning; Image representation; Pattern recognition
|
|
Jaime Moreno, Xavier Otazu, & Maria Vanrell. (2010). Contribution of CIWaM in JPEG2000 Quantization for Color Images. In Proceedings of The CREATE 2010 Conference (132–136).
Abstract: The aim of this work is to explain how to apply perceptual concepts to define a perceptual pre-quantizer and to improve JPEG2000 compressor. The approach consists in quantizing wavelet transform coefficients using some of the human visual system behavior properties. Noise is fatal to image compression performance, because it can be both annoying for the observer and consumes excessive bandwidth when the imagery is transmitted. Perceptual pre-quantization reduces unperceivable details and thus improve both visual impression and transmission properties. The comparison between JPEG2000 without and with perceptual pre-quantization shows that the latter is not favorable in PSNR, but the recovered image is more compressed at the same or even better visual quality measured with a weighted PSNR. Perceptual criteria were taken from the CIWaM(ChromaticInductionWaveletModel).
|
|
Yaxing Wang, Abel Gonzalez-Garcia, Luis Herranz, & Joost Van de Weijer. (2021). Controlling biases and diversity in diverse image-to-image translation. CVIU - Computer Vision and Image Understanding, 202, 103082.
Abstract: JCR 2019 Q2, IF=3.121
The task of unpaired image-to-image translation is highly challenging due to the lack of explicit cross-domain pairs of instances. We consider here diverse image translation (DIT), an even more challenging setting in which an image can have multiple plausible translations. This is normally achieved by explicitly disentangling content and style in the latent representation and sampling different styles codes while maintaining the image content. Despite the success of current DIT models, they are prone to suffer from bias. In this paper, we study the problem of bias in image-to-image translation. Biased datasets may add undesired changes (e.g. change gender or race in face images) to the output translations as a consequence of the particular underlying visual distribution in the target domain. In order to alleviate the effects of this problem we propose the use of semantic constraints that enforce the preservation of desired image properties. Our proposed model is a step towards unbiased diverse image-to-image translation (UDIT), and results in less unwanted changes in the translated images while still performing the wanted transformation. Experiments on several heavily biased datasets show the effectiveness of the proposed techniques in different domains such as faces, objects, and scenes.
|
|
Bojana Gajic, & Ramon Baldrich. (2018). Cross-domain fashion image retrieval. In CVPR 2018 Workshop on Women in Computer Vision (WiCV 2018, 4th Edition) (pp. 19500–19502).
Abstract: Cross domain image retrieval is a challenging task that implies matching images from one domain to their pairs from another domain. In this paper we focus on fashion image retrieval, which involves matching an image of a fashion item taken by users, to the images of the same item taken in controlled condition, usually by professional photographer. When facing this problem, we have different products
in train and test time, and we use triplet loss to train the network. We stress the importance of proper training of simple architecture, as well as adapting general models to the specific task.
|
|
Robert Benavente, Laura Igual, & Fernando Vilariño. (2008). Current Challenges in Computer Vision.
|
|
Aleksandr Setkov, Fabio Martinez Carillo, Michele Gouiffes, Christian Jacquemin, Maria Vanrell, & Ramon Baldrich. (2015). DAcImPro: A Novel Database of Acquired Image Projections and Its Application to Object Recognition. In Advances in Visual Computing. Proceedings of 11th International Symposium, ISVC 2015 Part II (Vol. 9475, pp. 463–473). LNCS. Springer International Publishing.
Abstract: Projector-camera systems are designed to improve the projection quality by comparing original images with their captured projections, which is usually complicated due to high photometric and geometric variations. Many research works address this problem using their own test data which makes it extremely difficult to compare different proposals. This paper has two main contributions. Firstly, we introduce a new database of acquired image projections (DAcImPro) that, covering photometric and geometric conditions and providing data for ground-truth computation, can serve to evaluate different algorithms in projector-camera systems. Secondly, a new object recognition scenario from acquired projections is presented, which could be of a great interest in such domains, as home video projections and public presentations. We show that the task is more challenging than the classical recognition problem and thus requires additional pre-processing, such as color compensation or projection area selection.
Keywords: Projector-camera systems; Feature descriptors; Object recognition
|
|
Robert Benavente. (1999). Dealing with colour variability: application to a colour naming task.
|
|
Hassan Ahmed Sial, Ramon Baldrich, & Maria Vanrell. (2020). Deep intrinsic decomposition trained on surreal scenes yet with realistic light effects. JOSA A - Journal of the Optical Society of America A, 37(1), 1–15.
Abstract: Estimation of intrinsic images still remains a challenging task due to weaknesses of ground-truth datasets, which either are too small or present non-realistic issues. On the other hand, end-to-end deep learning architectures start to achieve interesting results that we believe could be improved if important physical hints were not ignored. In this work, we present a twofold framework: (a) a flexible generation of images overcoming some classical dataset problems such as larger size jointly with coherent lighting appearance; and (b) a flexible architecture tying physical properties through intrinsic losses. Our proposal is versatile, presents low computation time, and achieves state-of-the-art results.
|
|
Fahad Shahbaz Khan, Muhammad Anwer Rao, Joost Van de Weijer, Michael Felsberg, & J.Laaksonen. (2015). Deep semantic pyramids for human attributes and action recognition. In Image Analysis, Proceedings of 19th Scandinavian Conference , SCIA 2015 (Vol. 9127, pp. 341–353). Springer International Publishing.
Abstract: Describing persons and their actions is a challenging problem due to variations in pose, scale and viewpoint in real-world images. Recently, semantic pyramids approach [1] for pose normalization has shown to provide excellent results for gender and action recognition. The performance of semantic pyramids approach relies on robust image description and is therefore limited due to the use of shallow local features. In the context of object recognition [2] and object detection [3], convolutional neural networks (CNNs) or deep features have shown to improve the performance over the conventional shallow features.
We propose deep semantic pyramids for human attributes and action recognition. The method works by constructing spatial pyramids based on CNNs of different part locations. These pyramids are then combined to obtain a single semantic representation. We validate our approach on the Berkeley and 27 Human Attributes datasets for attributes classification. For action recognition, we perform experiments on two challenging datasets: Willow and PASCAL VOC 2010. The proposed deep semantic pyramids provide a significant gain of 17.2%, 13.9%, 24.3% and 22.6% compared to the standard shallow semantic pyramids on Berkeley, 27 Human Attributes, Willow and PASCAL VOC 2010 datasets respectively. Our results also show that deep semantic pyramids outperform conventional CNNs based on the full bounding box of the person. Finally, we compare our approach with state-of-the-art methods and show a gain in performance compared to best methods in literature.
Keywords: Action recognition; Human attributes; Semantic pyramids
|
|
Rada Deeb, Joost Van de Weijer, Damien Muselet, Mathieu Hebert, & Alain Tremeau. (2019). Deep spectral reflectance and illuminant estimation from self-interreflections. JOSA A - Journal of the Optical Society of America A, 31(1), 105–114.
Abstract: In this work, we propose a convolutional neural network based approach to estimate the spectral reflectance of a surface and spectral power distribution of light from a single RGB image of a V-shaped surface. Interreflections happening in a concave surface lead to gradients of RGB values over its area. These gradients carry a lot of information concerning the physical properties of the surface and the illuminant. Our network is trained with only simulated data constructed using a physics-based interreflection model. Coupling interreflection effects with deep learning helps to retrieve the spectral reflectance under an unknown light and to estimate spectral power distribution of this light as well. In addition, it is more robust to the presence of image noise than classical approaches. Our results show that the proposed approach outperforms state-of-the-art learning-based approaches on simulated data. In addition, it gives better results on real data compared to other interreflection-based approaches.
|
|
Yaxing Wang, Lu Yu, & Joost Van de Weijer. (2020). DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs. In 34th Conference on Neural Information Processing Systems.
Abstract: Image-to-image translation has recently achieved remarkable results. But despite current success, it suffers from inferior performance when translations between classes require large shape changes. We attribute this to the high-resolution bottlenecks which are used by current state-of-the-art image-to-image methods. Therefore, in this work, we propose a novel deep hierarchical Image-to-Image Translation method, called DeepI2I. We learn a model by leveraging hierarchical features: (a) structural information contained in the shallow layers and (b) semantic information extracted from the deep layers. To enable the training of deep I2I models on small datasets, we propose a novel transfer learning method, that transfers knowledge from pre-trained GANs. Specifically, we leverage the discriminator of a pre-trained GANs (i.e. BigGAN or StyleGAN) to initialize both the encoder and the discriminator and the pre-trained generator to initialize the generator of our model. Applying knowledge transfer leads to an alignment problem between the encoder and generator. We introduce an adaptor network to address this. On many-class image-to-image translation on three datasets (Animal faces, Birds, and Foods) we decrease mFID by at least 35% when compared to the state-of-the-art. Furthermore, we qualitatively and quantitatively demonstrate that transfer learning significantly improves the performance of I2I systems, especially for small datasets. Finally, we are the first to perform I2I translations for domains with over 100 classes.
|
|
Chenshen Wu, & Joost Van de Weijer. (2023). Density Map Distillation for Incremental Object Counting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (pp. 2505–2514).
Abstract: We investigate the problem of incremental learning for object counting, where a method must learn to count a variety of object classes from a sequence of datasets. A naïve approach to incremental object counting would suffer from catastrophic forgetting, where it would suffer from a dramatic performance drop on previous tasks. In this paper, we propose a new exemplar-free functional regularization method, called Density Map Distillation (DMD). During training, we introduce a new counter head for each task and introduce a distillation loss to prevent forgetting of previous tasks. Additionally, we introduce a cross-task adaptor that projects the features of the current backbone to the previous backbone. This projector allows for the learning of new features while the backbone retains the relevant features for previous tasks. Finally, we set up experiments of incremental learning for counting new objects. Results confirm that our method greatly reduces catastrophic forgetting and outperforms existing methods.
|
|
Eduard Vazquez, Ramon Baldrich, Joost Van de Weijer, & Maria Vanrell. (2011). Describing Reflectances for Colour Segmentation Robust to Shadows, Highlights and Textures. TPAMI - IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(5), 917–930.
Abstract: The segmentation of a single material reflectance is a challenging problem due to the considerable variation in image measurements caused by the geometry of the object, shadows, and specularities. The combination of these effects has been modeled by the dichromatic reflection model. However, the application of the model to real-world images is limited due to unknown acquisition parameters and compression artifacts. In this paper, we present a robust model for the shape of a single material reflectance in histogram space. The method is based on a multilocal creaseness analysis of the histogram which results in a set of ridges representing the material reflectances. The segmentation method derived from these ridges is robust to both shadow, shading and specularities, and texture in real-world images. We further complete the method by incorporating prior knowledge from image statistics, and incorporate spatial coherence by using multiscale color contrast information. Results obtained show that our method clearly outperforms state-of-the-art segmentation methods on a widely used segmentation benchmark, having as a main characteristic its excellent performance in the presence of shadows and highlights at low computational cost.
|
|