toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Arka Ujjal Dey; Suman Ghosh; Ernest Valveny; Gaurav Harit edit   pdf
url  doi
openurl 
  Title Beyond Visual Semantics: Exploring the Role of Scene Text in Image Understanding Type Journal Article
  Year 2021 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 149 Issue Pages 164-171  
  Keywords  
  Abstract Images with visual and scene text content are ubiquitous in everyday life. However, current image interpretation systems are mostly limited to using only the visual features, neglecting to leverage the scene text content. In this paper, we propose to jointly use scene text and visual channels for robust semantic interpretation of images. We do not only extract and encode visual and scene text cues, but also model their interplay to generate a contextual joint embedding with richer semantics. The contextual embedding thus generated is applied to retrieval and classification tasks on multimedia images, with scene text content, to demonstrate its effectiveness. In the retrieval framework, we augment our learned text-visual semantic representation with scene text cues, to mitigate vocabulary misses that may have occurred during the semantic embedding. To deal with irrelevant or erroneous recognition of scene text, we also apply query-based attention to our text channel. We show how the multi-channel approach, involving visual semantics and scene text, improves upon state of the art.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ DGV2021 Serial 3364  
Permanent link to this record
 

 
Author Mohammed Al Rawi; Ernest Valveny edit   pdf
url  doi
openurl 
  Title Compact and Efficient Multitask Learning in Vision, Language and Speech Type Conference Article
  Year 2019 Publication IEEE International Conference on Computer Vision Workshops Abbreviated Journal  
  Volume Issue Pages 2933-2942  
  Keywords  
  Abstract Across-domain multitask learning is a challenging area of computer vision and machine learning due to the intra-similarities among class distributions. Addressing this problem to cope with the human cognition system by considering inter and intra-class categorization and recognition complicates the problem even further. We propose in this work an effective holistic and hierarchical learning by using a text embedding layer on top of a deep learning model. We also propose a novel sensory discriminator approach to resolve the collisions between different tasks and domains. We then train the model concurrently on textual sentiment analysis, speech recognition, image classification, action recognition from video, and handwriting word spotting of two different scripts (Arabic and English). The model we propose successfully learned different tasks across multiple domains.  
  Address Seul; Korea; October 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ RaV2019 Serial 3365  
Permanent link to this record
 

 
Author Eduardo Aguilar; Petia Radeva edit  url
openurl 
  Title Class-Conditional Data Augmentation Applied to Image Classification Type Conference Article
  Year 2019 Publication 18th International Conference on Computer Analysis of Images and Patterns Abbreviated Journal  
  Volume 11679 Issue Pages 182-192  
  Keywords CNNs; Data augmentation; Deep learning; Epistemic uncertainty; Image classification; Food recognition  
  Abstract Image classification is widely researched in the literature, where models based on Convolutional Neural Networks (CNNs) have provided better results. When data is not enough, CNN models tend to be overfitted. To deal with this, often, traditional techniques of data augmentation are applied, such as: affine transformations, adjusting the color balance, among others. However, we argue that some techniques of data augmentation may be more appropriate for some of the classes. In order to select the techniques that work best for particular class, we propose to explore the epistemic uncertainty for the samples within each class. From our experiments, we can observe that when the data augmentation is applied class-conditionally, we improve the results in terms of accuracy and also reduce the overall epistemic uncertainty. To summarize, in this paper we propose a class-conditional data augmentation procedure that allows us to obtain better results and improve robustness of the classification in the face of model uncertainty.  
  Address Salermo; Italy; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CAIP  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ AgR2019 Serial 3366  
Permanent link to this record
 

 
Author Estefania Talavera; Nicolai Petkov; Petia Radeva edit   pdf
url  doi
openurl 
  Title Unsupervised Routine Discovery in Egocentric Photo-Streams Type Conference Article
  Year 2019 Publication 18th International Conference on Computer Analysis of Images and Patterns Abbreviated Journal  
  Volume 11678 Issue Pages 576-588  
  Keywords Routine discovery; Lifestyle; Egocentric vision; Behaviour analysis  
  Abstract The routine of a person is defined by the occurrence of activities throughout different days, and can directly affect the person’s health. In this work, we address the recognition of routine related days. To do so, we rely on egocentric images, which are recorded by a wearable camera and allow to monitor the life of the user from a first-person view perspective. We propose an unsupervised model that identifies routine related days, following an outlier detection approach. We test the proposed framework over a total of 72 days in the form of photo-streams covering around 2 weeks of the life of 5 different camera wearers. Our model achieves an average of 76% Accuracy and 68% Weighted F-Score for all the users. Thus, we show that our framework is able to recognise routine related days and opens the door to the understanding of the behaviour of people.  
  Address Salermo; Italy; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CAIP  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ TPR2019a Serial 3367  
Permanent link to this record
 

 
Author Md.Mostafa Kamal Sarker; Syeda Furruka Banu; Hatem A. Rashwan; Mohamed Abdel-Nasser; Vivek Kumar Singh; Sylvie Chambon; Petia Radeva; Domenec Puig edit  doi
openurl 
  Title Food Places Classification in Egocentric Images Using Siamese Neural Networks Type Conference Article
  Year 2019 Publication 22nd International Conference of the Catalan Association of Artificial Intelligence Abbreviated Journal  
  Volume Issue Pages 145-151  
  Keywords  
  Abstract Wearable cameras are become more popular in recent years for capturing the unscripted moments of the first-person that help to analyze the users lifestyle. In this work, we aim to recognize the places related to food in egocentric images during a day to identify the daily food patterns of the first-person. Thus, this system can assist to improve their eating behavior to protect users against food-related diseases. In this paper, we use Siamese Neural Networks to learn the similarity between images from corresponding inputs for one-shot food places classification. We tested our proposed method with ‘MiniEgoFoodPlaces’ with 15 food related places. The proposed Siamese Neural Networks model with MobileNet achieved an overall classification accuracy of 76.74% and 77.53% on the validation and test sets of the “MiniEgoFoodPlaces” dataset, respectively outperforming with the base models, such as ResNet50, InceptionV3, and InceptionResNetV2.  
  Address Illes Balears; October 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CCIA  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ SBR2019 Serial 3368  
Permanent link to this record
 

 
Author Eduardo Aguilar; Petia Radeva edit  url
doi  openurl
  Title Food Recognition by Integrating Local and Flat Classifiers Type Conference Article
  Year 2019 Publication 9th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume 11867 Issue Pages 65-74  
  Keywords  
  Abstract The recognition of food image is an interesting research topic, in which its applicability in the creation of nutritional diaries stands out with the aim of improving the quality of life of people with a chronic disease (e.g. diabetes, heart disease) or prone to acquire it (e.g. people with overweight or obese). For a food recognition system to be useful in real applications, it is necessary to recognize a huge number of different foods. We argue that for very large scale classification, a traditional flat classifier is not enough to acquire an acceptable result. To address this, we propose a method that performs prediction with local classifiers, based on a class hierarchy, or with flat classifier. We decide which approach to use, depending on the analysis of both the Epistemic Uncertainty obtained for the image in the children classifiers and the prediction of the parent classifier. When our criterion is met, the final prediction is obtained with the respective local classifier; otherwise, with the flat classifier. From the results, we can see that the proposed method improves the classification performance compared to the use of a single flat classifier.  
  Address Madrid; July 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IbPRIA  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ AgR2019b Serial 3369  
Permanent link to this record
 

 
Author Emanuel Sanchez Aimar; Petia Radeva; Mariella Dimiccoli edit   pdf
url  doi
openurl 
  Title Social Relation Recognition in Egocentric Photostreams Type Conference Article
  Year 2019 Publication 26th International Conference on Image Processing Abbreviated Journal  
  Volume Issue Pages 3227-3231  
  Keywords  
  Abstract This paper proposes an approach to automatically categorize the social interactions of a user wearing a photo-camera (2fpm), by relying solely on what the camera is seeing. The problem is challenging due to the overwhelming complexity of social life and the extreme intra-class variability of social interactions captured under unconstrained conditions. We adopt the formalization proposed in Bugental's social theory, that groups human relations into five social domains with related categories. Our method is a new deep learning architecture that exploits the hierarchical structure of the label space and relies on a set of social attributes estimated at frame level to provide a semantic representation of social interactions. Experimental results on the new EgoSocialRelation dataset demonstrate the effectiveness of our proposal.  
  Address Taipei; Taiwan; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICIP  
  Notes MILAB; no menciona Approved no  
  Call Number Admin @ si @ SRD2019 Serial 3370  
Permanent link to this record
 

 
Author C. Alejandro Parraga; Xavier Otazu; Arash Akbarinia edit  openurl
  Title Modelling symmetry perception with banks of quadrature convolutional Gabor kernels Type Conference Article
  Year 2019 Publication 42nd edition of the European Conference on Visual Perception Abbreviated Journal  
  Volume Issue Pages 224-224  
  Keywords  
  Abstract Mirror symmetry is a property most likely to be encountered in animals than in medium scale vegetation or inanimate objects in the natural world. This might be the reason why the human visual system has evolved to detect it quickly and robustly. Indeed, the perception of symmetry assists higher-level visual processing that are crucial for survival such as target recognition and identification irrespective of position and location. Although the task of detecting symmetrical objects seems effortless to us, it is very challenging for computers (to the extent that it has been proposed as a robust “captcha” by Funk & Liu in 2016). Indeed, the exact mechanism of symmetry detection in primates is not well understood: fMRI studies have shown that symmetrical shapes activate specific higher-level areas of the visual cortex (Sasaki et al.; 2005) and similarly, a large body of psychophysical experiments suggest that the symmetry perception is critically influenced by low-level mechanisms (Treder; 2010). In this work we attempt to find plausible low-level mechanisms that might form the basis for symmetry perception. Our simple model is made from banks of (i) odd-symmetric Gabors (resembling edge-detecting V1 neurons); and (ii) banks of larger odd- and even-symmetric Gabors (resembling higher visual cortex neurons), that pool signals from the 'edge image'. As reported previously (Akbarinia et al, ECVP2017), the convolution of the symmetrical lines with the two Gabor kernels of alternative phase produces a minimum in one and a maximum in the other (Osorio; 1996), and the rectification and combination of these signals create lines which hint of mirror symmetry in natural images. We improved the algorithm by combining these signals across several spatial scales. Our preliminary results suggest that such multiscale combination of convolutional operations might form the basis for much of the operation of the HVS in terms of symmetry detection and representation.  
  Address Leuven; Belgium; August 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECVP  
  Notes NEUROBIT; 600.128 Approved no  
  Call Number Admin @ si @ POA2019 Serial 3371  
Permanent link to this record
 

 
Author David Berga; Xose R. Fernandez-Vidal; Xavier Otazu; Xose M. Pardo edit   pdf
url  doi
openurl 
  Title SID4VAM: A Benchmark Dataset with Synthetic Images for Visual Attention Modeling Type Conference Article
  Year 2019 Publication 18th IEEE International Conference on Computer Vision Abbreviated Journal  
  Volume Issue Pages 8788-8797  
  Keywords  
  Abstract A benchmark of saliency models performance with a synthetic image dataset is provided. Model performance is evaluated through saliency metrics as well as the influence of model inspiration and consistency with human psychophysics. SID4VAM is composed of 230 synthetic images, with known salient regions. Images were generated with 15 distinct types of low-level features (e.g. orientation, brightness, color, size...) with a target-distractor popout type of synthetic patterns. We have used Free-Viewing and Visual Search task instructions and 7 feature contrasts for each feature category. Our study reveals that state-ofthe-art Deep Learning saliency models do not perform well with synthetic pattern images, instead, models with Spectral/Fourier inspiration outperform others in saliency metrics and are more consistent with human psychophysical experimentation. This study proposes a new way to evaluate saliency models in the forthcoming literature, accounting for synthetic images with uniquely low-level feature contexts, distinct from previous eye tracking image datasets.  
  Address Seul; Corea; October 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCV  
  Notes NEUROBIT; 600.128 Approved no  
  Call Number Admin @ si @ BFO2019b Serial 3372  
Permanent link to this record
 

 
Author David Berga; Xavier Otazu edit  openurl
  Title Computations of inhibition of return mechanisms by modulating V1 dynamics Type Conference Article
  Year 2019 Publication 28th Annual Computational Neuroscience Meeting Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In this study we present a unifed model of the visual cortex for predicting visual attention using real image scenes. Feedforward mechanisms from RGC and LGN have been functionally modeled using wavelet filters at distinct orientations and scales for each chromatic pathway (Magno-, Parvo-, Konio-cellular) and polarity (ON-/OFF-center), by processing image components in the CIE Lab space. In V1, we process cortical interactions with an excitatory-inhibitory network of fring rate neurons, initially proposed by (Li, 1999), later extended by (Penacchio et al. 2013). Firing rates from model’s output have been used as predictors of neuronal activity to be projected in a map in superior colliculus (with WTA-like computations), determining locations of visual fxations. These locations will be considered as already visited areas for future saccades, therefore we integrated a spatiotemporal function of inhibition of return mechanisms (where LIP/FEF is responsible) to feed to the model with spatial memory for next saccades. Foveation mechanisms have been simulated with a cortical magnifcation function, which distort spatial viewing properties for each fxation. Results show lower prediction errors than with respect no IoR cases (Fig. 1), and it is functionally consistent with human psychophysical measurements. Our model follows a biologically-constrained architecture, previously shown to reproduce visual saliency (Berga & Otazu, 2018), visual discomfort (Penacchio et al. 2016), brightness (Penacchio et al. 2013) and chromatic induction (Cerda & Otazu, 2016).  
  Address Barcelona; July 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CNS  
  Notes NEUROBIT; no menciona Approved no  
  Call Number Admin @ si @ BeO2019a Serial 3373  
Permanent link to this record
 

 
Author David Berga; Xavier Otazu edit  openurl
  Title Computational modelingof visual attention: What do we know from physiology and psychophysics? Type Conference Article
  Year 2019 Publication 8th Iberian Conference on Perception Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Latest computer vision architectures use a chain of feedforward computations, mainly optimizing artificial neural networks for very specific tasks. Although their impressive performance (i.e. in saliency) using real image datasets, these models do not follow several biological principles of the human visual system (e.g. feedback and horizontal connections in cortex) and are unable to predict several visual tasks simultaneously. In this study we present biologically plausible computations from the early stages of the human visual system (i.e. retina and lateral geniculate nucleus) and lateral connections in V1. Despite the simplicity of these processes and without any type of training or optimization, simulations of firing-rate dynamics of V1 are able to predict bottom-up visual attention at distinct contexts (shown previously as well to predict visual discomfort, brightness and chromatic induction). We also show functional top-down selection mechanisms as feedback inhibition projections (i.e. prefrontal cortex for search/task-based attention and parietal area for inhibition of return). Distinct saliency model predictions are tested with eye tracking datasets in free-viewing and visual search tasks, using real images and synthetically-generated patterns. Results on predicting saliency and scanpaths show that artificial models do not outperform biologically-inspired ones (specifically for datasets that lack of common endogenous biases found in eye tracking experimentation), as well as, do not correctly predict contrast sensitivities in pop-out stimulus patterns. This work remarks the importance of considering biological principles of the visual system for building models that reproduce this (and any other) visual effects.  
  Address San Lorenzo El Escorial; July 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CIP  
  Notes NEUROBIT; no menciona Approved no  
  Call Number Admin @ si @ BeO2019b Serial 3374  
Permanent link to this record
 

 
Author David Berga; Xose R. Fernandez-Vidal; Xavier Otazu; Victor Leboran; Xose M. Pardo edit  openurl
  Title Measuring bottom-up visual attention in eye tracking experimentation with synthetic images Type Conference Article
  Year 2019 Publication 8th Iberian Conference on Perception Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract A benchmark of saliency models performance with a synthetic image dataset is provided. Model performance is evaluated through saliency metrics as well as the influence of model inspiration and consistency with human psychophysics. SID4VAM is composed of 230 synthetic images, with known salient regions. Images were generated with 15 distinct types of low-level features (e.g. orientation, brightness, color, size...) with a target-distractor pop-out type of synthetic patterns. We have used Free-Viewing and Visual Search task instructions and 7 feature contrasts for each feature category. Our study reveals that state-of-the-art Deep Learning saliency models do not perform well with synthetic pattern images, instead, models with Spectral/Fourier inspiration outperform others in saliency metrics and are more consistent with human psychophysical experimentation. This study proposes a new way to evaluate saliency models in the forthcoming literature, accounting for synthetic images with uniquely low-level feature contexts, distinct from previous eye tracking image datasets.  
  Address San Lorenzo El Escorial; July 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CIP  
  Notes NEUROBIT; 600.128 Approved no  
  Call Number Admin @ si @ BFO2019c Serial 3375  
Permanent link to this record
 

 
Author David Berga; Xavier Otazu edit  openurl
  Title Computations of top-down attention by modulating V1 dynamics Type Conference Article
  Year 2020 Publication Computational and Mathematical Models in Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address St. Pete Beach; Florida; May 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MODVIS  
  Notes NEUROBIT Approved no  
  Call Number Admin @ si @ BeO2020a Serial 3376  
Permanent link to this record
 

 
Author Estefania Talavera; Alexandre Cola; Nicolai Petkov; Petia Radeva edit   pdf
url  doi
openurl 
  Title Towards Egocentric Person Re-identification and Social Pattern Analysis. Type Book Chapter
  Year 2019 Publication Frontiers in Artificial Intelligence and Applications Abbreviated Journal  
  Volume 310 Issue Pages 203 - 211  
  Keywords  
  Abstract CoRR abs/1905.04073
Wearable cameras capture a first-person view of the daily activities of the camera wearer, offering a visual diary of the user behaviour. Detection of the appearance of people the camera user interacts with for social interactions analysis is of high interest. Generally speaking, social events, lifestyle and health are highly correlated, but there is a lack of tools to monitor and analyse them. We consider that egocentric vision provides a tool to obtain information and understand users social interactions. We propose a model that enables us to evaluate and visualize social traits obtained by analysing social interactions appearance within egocentric photostreams. Given sets of egocentric images, we detect the appearance of faces within the days of the camera wearer, and rely on clustering algorithms to group their feature descriptors in order to re-identify persons. Recurrence of detected faces within photostreams allows us to shape an idea of the social pattern of behaviour of the user. We validated our model over several weeks recorded by different camera wearers. Our findings indicate that social profiles are potentially useful for social behaviour interpretation.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ TCP2019 Serial 3377  
Permanent link to this record
 

 
Author Estefania Talavera; Maria Leyva-Vallina; Md. Mostafa Kamal Sarker; Domenec Puig; Nicolai Petkov; Petia Radeva edit   pdf
url  openurl
  Title Hierarchical approach to classify food scenes in egocentric photo-streams Type Journal Article
  Year 2020 Publication IEEE Journal of Biomedical and Health Informatics Abbreviated Journal J-BHI  
  Volume 24 Issue 3 Pages 866 - 877  
  Keywords  
  Abstract Recent studies have shown that the environment where people eat can affect their nutritional behaviour. In this work, we provide automatic tools for a personalised analysis of a person's health habits by the examination of daily recorded egocentric photo-streams. Specifically, we propose a new automatic approach for the classification of food-related environments, that is able to classify up to 15 such scenes. In this way, people can monitor the context around their food intake in order to get an objective insight into their daily eating routine. We propose a model that classifies food-related scenes organized in a semantic hierarchy. Additionally, we present and make available a new egocentric dataset composed of more than 33000 images recorded by a wearable camera, over which our proposed model has been tested. Our approach obtains an accuracy and F-score of 56\% and 65\%, respectively, clearly outperforming the baseline methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ TLM2020 Serial 3380  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: