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ABSTRACT

This paper proposes an approach to automatically catego-
rize the social interactions of a user wearing a photo-camera
(2fpm), by relying solely on what the camera is seeing. The
problem is challenging due to the overwhelming complexity
of social life and the extreme intra-class variability of social
interactions captured under unconstrained conditions. We
adopt the formalization proposed in Bugental’s social theory,
that groups human relations into five social domains with
related categories. Our method is a new deep learning ar-
chitecture that exploits the hierarchical structure of the label
space and relies on a set of social attributes estimated at frame
level to provide a semantic representation of social interac-
tions. Experimental results on the new EgoSocialRelation
dataset demonstrate the effectiveness of our proposal.

Index Terms— social relation recognition, egocentric vi-
sion, multi-task learning, LSTM

1. INTRODUCTION

As our social life keeps moving towards the digital world
and its social networks, new collective moments are continu-
ously being captured in the form pictures, audio, videos, and
text. Meanwhile, several studies have shown that human re-
lationships have an important effect in human health, involv-
ing physical and mental health, behaviour, and mortality risk
[1]. The need of a broader understanding of our social rela-
tions and their influence on human health have motivated an
increasing interest in the computer vision community for au-
tomatic discovery, quantification and categorization of social
interactions from the vast amount of public images and videos
[2, 3, 4, 5, 6, 7]. Recently, Aghaei et al. [7] have shown the
usefulness of egocentric photostreams, captured by a wear-
able photo-camera [8] to automatically analyze the daily so-
cial interactions of a person, in a natural setting where people
appear in an intimate perspective. Despite the challenging
characteristics of the egocentric domain, such as the fact that
the user is not visible in the field of view, background clut-
ter, and abrupt appearance changes [7], the authors showed
that it is possible not only to understand when the camera
wearer is interacting with somebody, but also to determine
with how many people the user has interacted with during a

Fig. 1: Examples of images from EgoSocialRelation dataset.

given period of time, the duration and frequency of the in-
teractions. However, in [7] the classification of interactions
was limited to formal and informal meetings. Recent work
[6] has proposed the Bugental’s domain-based social theory
[9] as a conceptualization of human social life to categorize
social interactions in images. The theory includes five do-
mains with examples of common relations, characterized by
specifics attributes and behaviours. Nevertheless, in [6], this
approach has been applied on a dataset of third-person images
collected from photo albums.

To evaluate the formalization proposed in [6] in a natural-
istic setting and at the same time going deeper into the under-
standing of social interactions from egocentric photostreams,
in this work we propose a new egocentric dataset, hereafter
referred to as EgoSocialRelation dataset1, where social inter-
actions, formed of short image sequences, are annotated in
a hierarchy of domain and relation labels, derived from Bu-
gental’s theory. Furthermore, we propose and validate, for the
first time on egocentric data, several models for social relation
categorization, hence providing a solid benchmark for further
studies. The proposed models rely on the composition of vi-
sual semantic attributes, and exploit the sequential nature of
photostreams. Code for experiments is publicly released2.

The rest of the paper is as follows: section 2 reviews re-
lated work; section 3 details our approach; section 4 intro-
duces a new dataset and discusses experimental results. Sec-
tion 5 concludes this work summarizing its contributions.

2. RELATED WORK

Third-view domain A large body of work has focused
on family member recognition [3], role recognition in so-

1 https://chest.iri.upc.edu/files/users/mdimiccoli/public html/DATASETS/
EgoSocialRelation.zip

2https://github.com/emasa/social-relations-recognition-egocentric-
photostreams
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Fig. 2: Illustration of face, body and contextual regions.

cial events [2], categorization of social groups based on ap-
pearance (e.g. urban tribes [4]) and occupation recognition
based on contextual information [5]. Inspired on Bugental’s
social domain-based theory [9], the authors of [6] proposed
an holistic approach to social relations categorization from
image data. The published dataset contains still images with
labels in a hierarchical structure of 5 social domains and 16
social relations, derived from Bugental’s theory. Furthermore,
they derived a family of models, combining human attributes
and behaviours, extracted with pretrained Convolutional Neu-
ral Networks (CNN), to ultimately classify the CNN feature
representation with a Support Vector Machine (SVM).
Egocentric domain The seminal work of Fathi et al. [10]
proposed to detect social interactions from egocentric videos,
by inferring the 3D location to which a person is looking at,
through a Markov Random Field model. They further cate-
gorized these interactions into three classes, namely discus-
sion, dialogue and monologue, depending on the role of the
participants in the interaction. Later on, [11] proposed a pro-
cedure to analyze social interaction sequences from egocen-
tric videos and detect them applying a model based on Hid-
den Markov Model and SVM, focusing on head and body
poses. With a different approach, Aghaei et al. [12, 13] pro-
posed to detect social interactions in egocentric photostreams,
while exploiting distance and orientation of observable peo-
ple w.r.t. the camera-user. Extending the previous work, [7]
categorized interactions into two broad categories, namely
formal and informal meetings, based on the classification of
sequences with a Long Short Term Memory (LSTM) model
[14]. The authors extended the original attributes with facial
expressions and global CNN features extracted at frame level,
the former related to affective internal states and the latter to
account for contextual information. They argue that for effec-
tive detection and categorization of social interactions from
an egocentric perspective, a combination of social signals and
environmental features is needed, as well as their evolution
over time.

In this paper, we propose a new dataset and several bench-
mark methods to classify social interactions from egocentric
photostreams into five domains and nine relations, following
the conceptualization of Bugental’s theory. With this work we
go beyond the state of the art on the classification of social
interactions from egocentric photostreams, that is currently
limited to formal/informal meeting classification.

3. METHODOLOGY

We propose several deep learning architecture that lever-
age multiple semantic attributes and their temporal evolution
over time. In particular, we aim at investigating the impor-
tance of semantic attributes for the classification performance
in egocentric photostreams as well as how to take advantage
of the hierarchical label space.

3.1. Preprocessing

Each photostream is partitioned into semantically mean-
ingful segments by applying SRclustering [15], where seg-
ments with a high ratio of visible people relative to the num-
ber of frames are considered as social segments. Given a
frame in a social segment, we extract three different regions,
illustrated in fig. 2. First, we apply a face detector [16] to
extract visible faces, discarding candidates with confidence
score (IoU) below 0.99. Then, we create an initial estimate
of face clusters based on visual similarity, using Microsoft
Cognitive Service API. It follows a manual procedure based
on visual inspection, to improve the quality of the clustering
(recategorizing misclassified samples, adding uncategorized
ones, discarding spurious samples and creating new clusters
if needed). For each observable person, we reorganize sub-
segments with valid faces. Given a valid frame, we extract
Face and Body regions, the latter delimited by 3 x face width
and 6 x face height, inspired in [6, 17]. Finally, we denote
the full (original) image as Contextual region. The procedure
results in a new dataset of sequences with trackable people
hereafter referred to as user-specific segments.

3.2. Feature extraction

We leverage CNN models pretrained on specialized
datasets to predict human-related attributes. Given a user-
specific segment, for each frame and social cue, we extract
high-dimensional intermediate CNN features, aka visual em-
beddings. We remove the task-specific classification layer,
ultimately using the penultimate fully connected (FC) layer.

Table 1 lists the semantic attributes used in this work.
In addition, because it is not possible to observe the person
holding the camera, we include the camera-wearer’s ground
truth age and gender information, following the categoriza-
tion in [6]. If we were to concatenate all extracted features,
the global representation would add up 33801 variables. To
mitigate the curse of dimensionality phenomenon, we apply
dimensionality reduction to CNN features for each attribute
independently, based on the approach proposed by [7]. In
this work, we define the quantification factor Q = 32, while
keeping the 50 most relevant principal components (ensur-
ing enough level of detail, with explained variance around
90%). After merging all the semantic attributes, including
compressed CNN features along with no-CNN features, we
obtain a final representation with 459 variables.



Semantic
attribute

CNN
architecture

Output
layer

Image
region Dataset Source

(Daily)
Activities ResNet50 [18] relu5c Full [19] [19]

Age (x2) CaffeNet [20] relu7
Face
Body PIPA [17] [6]

Clothing CaffeNet [20] relu7 Body
Berkeley
People

Attributes [21]
[6]

Facial
Expression CaffeNet [20] relu7 Face IMFDB [22] [6]

Gender (x2) CaffeNet [20] relu7
Face
Body PIPA [17] [6]

Head
Appearance CaffeNet [20] relu7 Face CelebA [23] [6]

Head
Orientation CaffeNet [20] relu7 Face IMFDB [22] [6]

Proximity N/A N/A Full [7] [7]

Table 1: List of semantic attributes.

3.3. Time-series classification

Given the compact representation computed for each
frame in a user-specific segment, we pose the problem of
social relation recognition as multi-class time-series classifi-
cation, where each component along the time axis represents
the time-evolution of an individual feature. We employ a
LSTM [14], specially designed to learn long-term depen-
dencies in the sequence. Our simplest model architecture is
presented in fig. 3a (denoted as Single-task strategy (ST)).
Two different models are trained using either relation or
domain labels. To take advantage of the hierarchical label
space, we propose the model in fig. 3b. The class output
of the first level, i.e. domains, is provided as input for pre-
dicting the second level, i.e. relations (denoted as Multi-task
Top-down strategy (MT-TD)), inspired on the hierarchical
approach proposed by Cerri et al. [24]. We also evaluate the
model in fig. 3c without the extra constrain (denoted as the
Multi-task Independent strategy, (MT-IND)). As the model’s
description suggests, multiple objectives are trained with
multi-task learning [25], jointly optimizing the loss functions
(with equal importance). In all cases, the first and last FC lay-
ers are followed by ReLU and Softmax activation functions
respectively, while using Cross-Entropy as loss function.

4. EXPERIMENTAL RESULTS

4.1. Experimental setting

Dataset We started from the EgoSocialStyle dataset, col-
lected by 9 users wearing a Narrative Clip camera, recording
at two fpm in a daily life scenario. Following the protocol
in [7], we extended it with 119 new sequences, collected
by the same users. Later on, we extracted user-specific
segments (section 3.1) and annotated them with social la-
bels. Similar to [6], valid sequences must have one valid
relation label. We discarded examples with zero or mul-
tiple labels, also with insufficient samples (less than 20).
Our final EgoSocialRelation dataset includes 693 sequences,
grouped in five domains and nine relations, namely Attach-
ment (father-child, mother-child), Reciprocity (friends, class-
mates), Mating (lovers), Coalitional group (colleagues), and
Hierarchical group (presenter-audience, leader-subordinate

Fig. 3: Evaluated architectures for social recognition.

and customer-staff ).
Validation methodology To validate our approach, we
used a form of repeated random sub-sampling cross-validation
[26]. First, we arrange our dataset in groups of whole days
captured by a given user. Then, we sampled randomly
N = 1000 examples, ensuring the day’s separation criteria
and approximately 80%/20% size ratios for training and val-
idation, respectively. For each combination, we considered
the best candidates with minimal Kullback-Leibler diver-
gence between the normalized distributions of each split. We
pick the top candidate, leaving the validation split for testing
purposes, and repeat the adhoc procedure using the training
split, to obtain the top K=3 splits for model cross-validation.
This strategy allows us to define data splits in a way that
overlapping or consecutive user-specific sequences, that may
capture the same social interaction, are put together, while
maintaining the statistical distribution of the data. Given
the relatively small size of our dataset, we applied the data
augmentation strategy proposed by [7] to mitigate the over-
fitting problem. In a glance, we compute PCA and add
random noise in the direction of the eigenvectors, and propor-
tional to the eigenvalues times a Gaussian random variable
X ∼ N (µ = 0, σ = 0.01). This way we ensure that the orig-
inal labels are preserved in new augmented samples. Since
the dataset is highly imbalanced, we assess the competing
models with two metrics, overall accuracy (abbreviated acc)
and macro f1-score. We maximize f1-score for model se-
lection, giving the same importance to all classes, instead of
performing well just on over-represented classes. We address
class imbalance further by using a class weighting scheme
embedded in the global loss function [27]. It follows our
final model configuration, obtained with grid search over the
next parameters: number of neurons = 128, learning rate
α = 2e−3, dropout rate = 0.3, L2 regularization λ = 1e−3
and number of training iterations = 150. We used Adam [28]
to optimize the model, with a step decay schedule halving the
initial α every 50 iterations.

4.2. Discussion

Social relations Although, f1-score and acc validate the re-
sults in distinct ways, both follow the same trend for models
categorizing relations in table 2 (prefix REL and DOM for



F1-score [%] Acc [%]
REL-ONLY 32.19 57.10
REL-MT-I 31.06 54.90

REL-MT-TD 33.26 58.60
DOM-ONLY 44.52 59.40
DOM-MT-I 38.38 54.90

DOM-MT-TD 42.49 56.40

REL-SVM-PIPA - 57.20
DOM-SVM-PIPA - 67.80

Table 2: Social relation and domain recognition results.

F1-score [%] Acc [%]
REL-FACE 23.39 31.60
REL-BODY 25.30 49.60
REL-CTX 25.18 46.60
REL-ALL 33.26 58.60

DOM-FACE 34.42 38.30
DOM-BODY 31.69 50.40
DOM-CTX 33.61 45.90
DOM-ALL 42.49 56.40

Table 3: Recognition results by attribute groups with MT-TD.

relation and domain recognition, respectively). By leveraging
the hierarchy of labels and injecting knowledge of domains,
model REL-MT-TD achieves the highest performance in re-
lation recognition, this way proving beneficial to have both
coarse and fine-grained social categorizations. This extra hint
is key to our approach, as training with independent objectives
(REL-MT-IND) seems counterproductive, even compared to
not exploiting domain labels at all (REL-ST). For compar-
ative purposes, we observe that Sun et al. [6], reported an
acc equivalent to REL-ST for relation recognition on PIPA
(REL-SVM-PIPA, f1-score not available).
Social domains Social characterization at domain level
provides useful information, despite the coarser representa-
tion. Table 2 presents single-task model DOM-ST as the top
performer for this task, surpassing alternatives that rely on
relation labels, what indicates that a finer class granularity
does not necessarily improve predictions at the top level.
Still, model DOM-MT-IND has a f1-score 10% lower that
DOM-MT-TD, further supporting the top-down approach.
Given the hierarchical label space, we can either predict
the most likely domain as presented before, or indirectly
predicting the most likely relation, and then inferring the as-
sociated domain. Notoriously, the performance of multi-task
strategies increases with the second approach, giving model
DOM-MT-TD a boost in f1-score and acc up to 42.69% and
59.40% respectively, matching the best model’s accuracy. In
comparison, Sun et al. [6] reports a slightly higher acc of
67.80% in PIPA, possibly due to a difference in criteria for
model selection (we used f1-score instead of acc).
Analysis of semantic attributes In this section, we study
the contribution of different subsets of semantic attributes
(see table 3), with focus on the MT-TD strategy to simplify
the analysis. Models FACE and BODY include facial and
body attributes (respectively), and extra camera-user’s info.

Fig. 4: F1-score per domain class by group of attributes.

Model CTX exploits the context by considering activity and
proximity, while model ALL denotes the fusion of all at-
tributes. We observe that the contribution of partial subsets
of attributes is stronger for domain recognition, or equiva-
lently, more attributes are needed to recognize relations. This
support the hypothesis considering the relation recognizing
as a more complex, most likely due to finer class granularity.
Nevertheless, both tasks maximize f1-score by leveraging all
attributes. It can be seen that BODY models present consid-
erable higher acc than their FACE counterparts, most likely
due to body features being more robust to partial occlusion
and different perspectives. However, this fact contrasts with
f1-score performance. To shed light on this issue, fig. 4
presents f1-score computed for each domain class.

Facial attributes are specially relevant for Attachment and
Mating (emotions, head orientation, gender cue). Further-
more, without facial information, f1-score drops heavily for
Mating, acknowledging that lovers may not be distinguished
from friends or co-workers in this scenario. In line with previ-
ous studies [7], faces are key to categorize colleagues (Coali-
tional group) and friends (Reciprocity). Body attributes pro-
vide a different perspective, still, they are very relevant for
Coalitional group (e.g. uniform clothing) and Reciprocity,
and also for Attachment, characterized by large age differ-
ence. Finally, daily activities (main contextual signal) are
key to classify Coalitional group (working) and Reciprocity
(gathering and sharing). Summarizing, in our experiments we
observe that social domains respond to specific social cues, in
correspondence with the principles proposed by Bugental.

5. CONCLUSIONS

This paper addressed for the first time the categorization
of social relations following Bugental’s conceptualization in
the domain of egocentric photostreams. A new egocentric
dataset of social events acquired under unconstrained condi-
tions, has been released and a family of models employing
CNN models for feature extraction and a LSTM-based clas-
sifier have been tested providing a benchmark. Moreover, by
applying multi-task learning with a hierarchical label space in
a top-down approach, our model provides a solid baseline for
the task of relation recognition, while outperforming straight-
forward alternatives.



6. REFERENCES

[1] Debra Umberson and Jennifer Karas Montez, “Social
relationships and health: A flashpoint for health pol-
icy,” Journal of health and social behavior, vol. 51, no.
1 suppl, pp. S54–S66, 2010.

[2] V. Ramanathan, B. Yao, and L. Fei-Fei, “Social role
discovery in human events,” in IEEE CVPR, 2013, pp.
2475–2482.

[3] Afshin Dehghan, Enrique G Ortiz, Ruben Villegas, and
Mubarak Shah, “Who do i look like? determining
parent-offspring resemblance via gated autoencoders,”
in IEEE CVPR, 2014, pp. 1757–1764.

[4] Ana C Murillo, Iljung S Kwak, Lubomir Bourdev, David
Kriegman, and Serge Belongie, “Urban tribes: Analyz-
ing group photos from a social perspective,” in CVPRW.
IEEE, 2012, pp. 28–35.

[5] Ming Shao, Liangyue Li, and Yun Fu, “What do you do?
occupation recognition in a photo via social context,” in
ICCV IEEE, 2013, pp. 3631–3638.

[6] Qianru Sun, Bernt Schiele, and Mario Fritz, “A domain
based approach to social relation recognition,” in IEEE
CVPR, 2017, pp. 21–26.

[7] Maedeh Aghaei, Mariella Dimiccoli, Cristian Canton
Ferrer, and Petia Radeva, “Towards social pattern char-
acterization in egocentric photo-streams,” Computer Vi-
sion and Image Understanding, vol. 171, pp. 104–117,
2018.

[8] Marc Bolanos, Mariella Dimiccoli, and Petia Radeva,
“Toward storytelling from visual lifelogging: An
overview,” IEEE Transactions on Human-Machine Sys-
tems, vol. 47, no. 1, pp. 77–90, 2017.

[9] Daphne Blunt Bugental, “Acquisition of the algorithms
of social life: a domain-based approach.,” Psychological
bulletin, vol. 126 2, pp. 187–219, 2000.

[10] Alireza Fathi, Jessica Hodgins, and James Rehg, “So-
cial interactions: A first-person perspective,” pp. 1226–
1233, 06 2012.

[11] Jen-An Yang, Chia-Han Lee, Shao-Wen Yang, V Srini-
vasa Somayazulu, Yen-Kuang Chen, and Shao-Yi
Chien, “Wearable social camera: Egocentric video sum-
marization for social interaction,” in ICMEW IEEE,
2016, pp. 1–6.

[12] Maedeh Aghaei, Mariella Dimiccoli, and Petia Radeva,
“Towards social interaction detection in egocentric
photo-streams,” in ICMV, 2015, vol. 9875.

[13] Maedeh Aghaei, Mariella Dimiccoli, and Petia Radeva,
“With whom do i interact? detecting social interac-
tions in egocentric photo-streams,” in ICPR 2016. IEEE,
2016, pp. 2959–2964.

[14] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-
term memory,” Neural computation, vol. 9, no. 8, pp.
1735–1780, 1997.

[15] Mariella Dimiccoli, Marc Bolaños, Estefania Talavera,
Maedeh Aghaei, Stavri G Nikolov, and Petia Radeva,
“Sr-clustering: Semantic regularized clustering for ego-
centric photo streams segmentation,” Computer Vision
and Image Understanding, vol. 155, pp. 55–69, 2017.

[16] N. Ruiz and J. M. Rehg, “Dockerface: an easy to in-
stall and use Faster R-CNN face detector in a Docker
container,” ArXiv e-prints, Aug. 2017.

[17] Seong Joon Oh, Rodrigo Benenson, Mario Fritz, and
Bernt Schiele, “Person recognition in personal photo
collections,” in ICCV IEEE, 2015, pp. 3862–3870.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
IEEE CVPR, 2016, pp. 770–778.

[19] Alejandro Cartas, Juan Marı́n, Petia Radeva, and
Mariella Dimiccoli, “Batch-based activity recognition
from egocentric photo-streams revisited,” Pattern Anal-
ysis and Applications, vol. 21, no. 4, pp. 953–965, 2018.

[20] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell, “Caffe: Convolutional archi-
tecture for fast feature embedding,” in ACM Multimedia,
2014, pp. 675–678.

[21] Lubomir Bourdev, Subhransu Maji, and Jitendra Ma-
lik, “Describing people: A poselet-based approach to
attribute classification,” in IEEE ICCV, 2012, pp. 1543–
1550.

[22] Shankar Setty, Moula Husain, Parisa Beham, Jyothi
Gudavalli, Menaka Kandasamy, Radhesyam Vaddi,
Vidyagouri Hemadri, JC Karure, Raja Raju, B Rajan,
et al., “Indian movie face database: a benchmark for
face recognition under wide variations,” in CVPRIPG.
IEEE, 2013, pp. 1–5.

[23] Li-Jia Li, David A. Shamma, Xiangnan Kong, Sina Ja-
farpour, Roelof van Zwol, and Xuanhui Wang, “Celebri-
tynet: A social network constructed from large-scale on-
line celebrity images,” TOMCCAP, vol. 12, pp. 3:1–
3:22, 2015.

[24] Ricardo Cerri, Rodrigo C Barros, André CPLF de Car-
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