toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author A. Ruiz; Joost Van de Weijer; Xavier Binefa edit   pdf
url  openurl
  Title Regularized Multi-Concept MIL for weakly-supervised facial behavior categorization Type Conference Article
  Year 2014 Publication (up) 25th British Machine Vision Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract We address the problem of estimating high-level semantic labels for videos of recorded people by means of analysing their facial expressions. This problem, to which we refer as facial behavior categorization, is a weakly-supervised learning problem where we do not have access to frame-by-frame facial gesture annotations but only weak-labels at the video level are available. Therefore, the goal is to learn a set of discriminative expressions and how they determine the video weak-labels. Facial behavior categorization can be posed as a Multi-Instance-Learning (MIL) problem and we propose a novel MIL method called Regularized Multi-Concept MIL to solve it. In contrast to previous approaches applied in facial behavior analysis, RMC-MIL follows a Multi-Concept assumption which allows different facial expressions (concepts) to contribute differently to the video-label. Moreover, to handle with the high-dimensional nature of facial-descriptors, RMC-MIL uses a discriminative approach to model the concepts and structured sparsity regularization to discard non-informative features. RMC-MIL is posed as a convex-constrained optimization problem where all the parameters are jointly learned using the Projected-Quasi-Newton method. In our experiments, we use two public data-sets to show the advantages of the Regularized Multi-Concept approach and its improvement compared to existing MIL methods. RMC-MIL outperforms state-of-the-art results in the UNBC data-set for pain detection.  
  Address Nottingham; UK; September 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference BMVC  
  Notes LAMP; CIC; 600.074; 600.079 Approved no  
  Call Number Admin @ si @ RWB2014 Serial 2508  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Muhammad Anwer Rao; Joost Van de Weijer; Andrew Bagdanov; Maria Vanrell; Antonio Lopez edit   pdf
url  doi
isbn  openurl
  Title Color Attributes for Object Detection Type Conference Article
  Year 2012 Publication (up) 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 3306-3313  
  Keywords pedestrian detection  
  Abstract State-of-the-art object detectors typically use shape information as a low level feature representation to capture the local structure of an object. This paper shows that early fusion of shape and color, as is popular in image classification,
leads to a significant drop in performance for object detection. Moreover, such approaches also yields suboptimal results for object categories with varying importance of color and shape.
In this paper we propose the use of color attributes as an explicit color representation for object detection. Color attributes are compact, computationally efficient, and when combined with traditional shape features provide state-ofthe-
art results for object detection. Our method is tested on the PASCAL VOC 2007 and 2009 datasets and results clearly show that our method improves over state-of-the-art techniques despite its simplicity. We also introduce a new dataset consisting of cartoon character images in which color plays a pivotal role. On this dataset, our approach yields a significant gain of 14% in mean AP over conventional state-of-the-art methods.
 
  Address Providence; Rhode Island; USA;  
  Corporate Author Thesis  
  Publisher IEEE Xplore Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-6919 ISBN 978-1-4673-1226-4 Medium  
  Area Expedition Conference CVPR  
  Notes ADAS; CIC; Approved no  
  Call Number Admin @ si @ KRW2012 Serial 1935  
Permanent link to this record
 

 
Author Naila Murray; Luca Marchesotti; Florent Perronnin edit   pdf
url  doi
isbn  openurl
  Title AVA: A Large-Scale Database for Aesthetic Visual Analysis Type Conference Article
  Year 2012 Publication (up) 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 2408-2415  
  Keywords  
  Abstract With the ever-expanding volume of visual content available, the ability to organize and navigate such content by aesthetic preference is becoming increasingly important. While still in its nascent stage, research into computational models of aesthetic preference already shows great potential. However, to advance research, realistic, diverse and challenging databases are needed. To this end, we introduce a new large-scale database for conducting Aesthetic Visual Analysis: AVA. It contains over 250,000 images along with a rich variety of meta-data including a large number of aesthetic scores for each image, semantic labels for over 60 categories as well as labels related to photographic style. We show the advantages of AVA with respect to existing databases in terms of scale, diversity, and heterogeneity of annotations. We then describe several key insights into aesthetic preference afforded by AVA. Finally, we demonstrate, through three applications, how the large scale of AVA can be leveraged to improve performance on existing preference tasks  
  Address Providence, Rhode Islan  
  Corporate Author Thesis  
  Publisher IEEE Xplore Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-6919 ISBN 978-1-4673-1226-4 Medium  
  Area Expedition Conference CVPR  
  Notes CIC Approved no  
  Call Number Admin @ si @ MMP2012a Serial 2025  
Permanent link to this record
 

 
Author Marc Serra; Olivier Penacchio; Robert Benavente; Maria Vanrell edit   pdf
url  doi
isbn  openurl
  Title Names and Shades of Color for Intrinsic Image Estimation Type Conference Article
  Year 2012 Publication (up) 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 278-285  
  Keywords  
  Abstract In the last years, intrinsic image decomposition has gained attention. Most of the state-of-the-art methods are based on the assumption that reflectance changes come along with strong image edges. Recently, user intervention in the recovery problem has proved to be a remarkable source of improvement. In this paper, we propose a novel approach that aims to overcome the shortcomings of pure edge-based methods by introducing strong surface descriptors, such as the color-name descriptor which introduces high-level considerations resembling top-down intervention. We also use a second surface descriptor, termed color-shade, which allows us to include physical considerations derived from the image formation model capturing gradual color surface variations. Both color cues are combined by means of a Markov Random Field. The method is quantitatively tested on the MIT ground truth dataset using different error metrics, achieving state-of-the-art performance.  
  Address Providence, Rhode Island  
  Corporate Author Thesis  
  Publisher IEEE Xplore Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-6919 ISBN 978-1-4673-1226-4 Medium  
  Area Expedition Conference CVPR  
  Notes CIC Approved no  
  Call Number Admin @ si @ SPB2012 Serial 2026  
Permanent link to this record
 

 
Author Hassan Ahmed Sial; S. Sancho; Ramon Baldrich; Robert Benavente; Maria Vanrell edit   pdf
url  openurl
  Title Color-based data augmentation for Reflectance Estimation Type Conference Article
  Year 2018 Publication (up) 26th Color Imaging Conference Abbreviated Journal  
  Volume Issue Pages 284-289  
  Keywords  
  Abstract Deep convolutional architectures have shown to be successful frameworks to solve generic computer vision problems. The estimation of intrinsic reflectance from single image is not a solved problem yet. Encoder-Decoder architectures are a perfect approach for pixel-wise reflectance estimation, although it usually suffers from the lack of large datasets. Lack of data can be partially solved with data augmentation, however usual techniques focus on geometric changes which does not help for reflectance estimation. In this paper we propose a color-based data augmentation technique that extends the training data by increasing the variability of chromaticity. Rotation on the red-green blue-yellow plane of an opponent space enable to increase the training set in a coherent and sound way that improves network generalization capability for reflectance estimation. We perform some experiments on the Sintel dataset showing that our color-based augmentation increase performance and overcomes one of the state-of-the-art methods.  
  Address Vancouver; November 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CIC  
  Notes CIC Approved no  
  Call Number Admin @ si @ SSB2018a Serial 3129  
Permanent link to this record
 

 
Author Marc Serra; Olivier Penacchio; Robert Benavente; Maria Vanrell; Dimitris Samaras edit   pdf
doi  openurl
  Title The Photometry of Intrinsic Images Type Conference Article
  Year 2014 Publication (up) 27th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 1494-1501  
  Keywords  
  Abstract Intrinsic characterization of scenes is often the best way to overcome the illumination variability artifacts that complicate most computer vision problems, from 3D reconstruction to object or material recognition. This paper examines the deficiency of existing intrinsic image models to accurately account for the effects of illuminant color and sensor characteristics in the estimation of intrinsic images and presents a generic framework which incorporates insights from color constancy research to the intrinsic image decomposition problem. The proposed mathematical formulation includes information about the color of the illuminant and the effects of the camera sensors, both of which modify the observed color of the reflectance of the objects in the scene during the acquisition process. By modeling these effects, we get a “truly intrinsic” reflectance image, which we call absolute reflectance, which is invariant to changes of illuminant or camera sensors. This model allows us to represent a wide range of intrinsic image decompositions depending on the specific assumptions on the geometric properties of the scene configuration and the spectral properties of the light source and the acquisition system, thus unifying previous models in a single general framework. We demonstrate that even partial information about sensors improves significantly the estimated reflectance images, thus making our method applicable for a wide range of sensors. We validate our general intrinsic image framework experimentally with both synthetic data and natural images.  
  Address Columbus; Ohio; USA; June 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes CIC; 600.052; 600.051; 600.074 Approved no  
  Call Number Admin @ si @ SPB2014 Serial 2506  
Permanent link to this record
 

 
Author M. Danelljan; Fahad Shahbaz Khan; Michael Felsberg; Joost Van de Weijer edit   pdf
doi  openurl
  Title Adaptive color attributes for real-time visual tracking Type Conference Article
  Year 2014 Publication (up) 27th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 1090 - 1097  
  Keywords  
  Abstract Visual tracking is a challenging problem in computer vision. Most state-of-the-art visual trackers either rely on luminance information or use simple color representations for image description. Contrary to visual tracking, for object
recognition and detection, sophisticated color features when combined with luminance have shown to provide excellent performance. Due to the complexity of the tracking problem, the desired color feature should be computationally
efficient, and possess a certain amount of photometric invariance while maintaining high discriminative power.
This paper investigates the contribution of color in a tracking-by-detection framework. Our results suggest that color attributes provides superior performance for visual tracking. We further propose an adaptive low-dimensional
variant of color attributes. Both quantitative and attributebased evaluations are performed on 41 challenging benchmark color sequences. The proposed approach improves the baseline intensity-based tracker by 24% in median distance precision. Furthermore, we show that our approach outperforms
state-of-the-art tracking methods while running at more than 100 frames per second.
 
  Address Nottingham; UK; September 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes CIC; LAMP; 600.074; 600.079 Approved no  
  Call Number Admin @ si @ DKF2014 Serial 2509  
Permanent link to this record
 

 
Author Graham D. Finlayson; Javier Vazquez; Fufu Fang edit   pdf
doi  openurl
  Title The Discrete Cosine Maximum Ignorance Assumption Type Conference Article
  Year 2021 Publication (up) 29th Color and Imaging Conference Abbreviated Journal  
  Volume Issue Pages 13-18  
  Keywords  
  Abstract the performance of colour correction algorithms are dependent on the reflectance sets used. Sometimes, when the testing reflectance set is changed the ranking of colour correction algorithms also changes. To remove dependence on dataset we can
make assumptions about the set of all possible reflectances. In the Maximum Ignorance with Positivity (MIP) assumption we assume that all reflectances with per wavelength values between 0 and 1 are equally likely. A weakness in the MIP is that it fails to take into account the correlation of reflectance functions between
wavelengths (many of the assumed reflectances are, in reality, not possible).
In this paper, we take the view that the maximum ignorance assumption has merit but, hitherto it has been calculated with respect to the wrong coordinate basis. Here, we propose the Discrete Cosine Maximum Ignorance assumption (DCMI), where
all reflectances that have coordinates between max and min bounds in the Discrete Cosine Basis coordinate system are equally likely.
Here, the correlation between wavelengths is encoded and this results in the set of all plausible reflectances ’looking like’ typical reflectances that occur in nature. This said the DCMI model is also a superset of all measured reflectance sets.
Experiments show that, in colour correction, adopting the DCMI results in similar colour correction performance as using a particular reflectance set.
 
  Address Virtual; November 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CIC  
  Notes CIC Approved no  
  Call Number FVF2021 Serial 3596  
Permanent link to this record
 

 
Author Xavier Otazu; Maria Vanrell edit  openurl
  Title Several lightness induction effects with a computational multiresolution wavelet framework Type Journal
  Year 2006 Publication (up) 29th European Conference on Visual Perception (ECVP’06), Perception Suppl s, 32: 56–56 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Saint-Petersburg (Russia)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number CAT @ cat @ OtV2006 Serial 659  
Permanent link to this record
 

 
Author Javier Vazquez; Robert Benavente; Maria Vanrell edit   pdf
url  openurl
  Title Naming constraints constancy Type Conference Article
  Year 2012 Publication (up) 2nd Joint AVA / BMVA Meeting on Biological and Machine Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Different studies have shown that languages from industrialized cultures
share a set of 11 basic colour terms: red, green, blue, yellow, pink, purple, brown, orange, black, white, and grey (Berlin & Kay, 1969, Basic Color Terms, University of California Press)( Kay & Regier, 2003, PNAS, 100, 9085-9089). Some of these studies have also reported the best representatives or focal values of each colour (Boynton and Olson, 1990, Vision Res. 30,1311–1317), (Sturges and Whitfield, 1995, CRA, 20:6, 364–376). Some further studies have provided us with fuzzy datasets for color naming by asking human observers to rate colours in terms of membership values (Benavente -et al-, 2006, CRA. 31:1, 48–56,). Recently, a computational model based on these human ratings has been developed (Benavente -et al-, 2008, JOSA-A, 25:10, 2582-2593). This computational model follows a fuzzy approach to assign a colour name to a particular RGB value. For example, a pixel with a value (255,0,0) will be named 'red' with membership 1, while a cyan pixel with a RGB value of (0, 200, 200) will be considered to be 0.5 green and 0.5 blue. In this work, we show how this colour naming paradigm can be applied to different computer vision tasks. In particular, we report results in colour constancy (Vazquez-Corral -et al-, 2012, IEEE TIP, in press) showing that the classical constraints on either illumination or surface reflectance can be substituted by
the statistical properties encoded in the colour names. [Supported by projects TIN2010-21771-C02-1, CSD2007-00018].
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference AV A  
  Notes CIC Approved no  
  Call Number Admin @ si @ VBV2012 Serial 2131  
Permanent link to this record
 

 
Author Xavier Otazu; Olivier Penacchio; Laura Dempere-Marco edit   pdf
url  openurl
  Title An investigation into plausible neural mechanisms related to the the CIWaM computational model for brightness induction Type Conference Article
  Year 2012 Publication (up) 2nd Joint AVA / BMVA Meeting on Biological and Machine Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Brightness induction is the modulation of the perceived intensity of an area by the luminance of surrounding areas. From a purely computational perspective, we built a low-level computational model (CIWaM) of early sensory processing based on multi-resolution wavelets with the aim of replicating brightness and colour (Otazu et al., 2010, Journal of Vision, 10(12):5) induction effects. Furthermore, we successfully used the CIWaM architecture to define a computational saliency model (Murray et al, 2011, CVPR, 433-440; Vanrell et al, submitted to AVA/BMVA'12). From a biological perspective, neurophysiological evidence suggests that perceived brightness information may be explicitly represented in V1. In this work we investigate possible neural mechanisms that offer a plausible explanation for such effects. To this end, we consider the model by Z.Li (Li, 1999, Network:Comput. Neural Syst., 10, 187-212) which is based on biological data and focuses on the part of V1 responsible for contextual influences, namely, layer 2-3 pyramidal cells, interneurons, and horizontal intracortical connections. This model has proven to account for phenomena such as visual saliency, which share with brightness induction the relevant effect of contextual influences (the ones modelled by CIWaM). In the proposed model, the input to the network is derived from a complete multiscale and multiorientation wavelet decomposition taken from the computational model (CIWaM).
This model successfully accounts for well known pyschophysical effects (among them: the White's and modied White's effects, the Todorovic, Chevreul, achromatic ring patterns, and grating induction effects) for static contexts and also for brigthness induction in dynamic contexts defined by modulating the luminance of surrounding areas. From a methodological point of view, we conclude that the results obtained by the computational model (CIWaM) are compatible with the ones obtained by the neurodynamical model proposed here.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference AV A  
  Notes CIC Approved no  
  Call Number Admin @ si @ OPD2012a Serial 2132  
Permanent link to this record
 

 
Author Antonio Lopez; J. Hilgenstock; A. Busse; Ramon Baldrich; Felipe Lumbreras; Joan Serrat edit   pdf
openurl 
  Title Temporal Coherence Analysis for Intelligent Headlight Control Type Miscellaneous
  Year 2008 Publication (up) 2nd Workshop on Perception, Planning and Navigation for Intelligent Vehicles Abbreviated Journal  
  Volume Issue Pages 59–64  
  Keywords Intelligent Headlights  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IROS  
  Notes ADAS;CIC Approved no  
  Call Number ADAS @ adas @ LHB2008b Serial 1112  
Permanent link to this record
 

 
Author Bojana Gajic; Ariel Amato; Ramon Baldrich; Carlo Gatta edit   pdf
openurl 
  Title Bag of Negatives for Siamese Architectures Type Conference Article
  Year 2019 Publication (up) 30th British Machine Vision Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Training a Siamese architecture for re-identification with a large number of identities is a challenging task due to the difficulty of finding relevant negative samples efficiently. In this work we present Bag of Negatives (BoN), a method for accelerated and improved training of Siamese networks that scales well on datasets with a very large number of identities. BoN is an efficient and loss-independent method, able to select a bag of high quality negatives, based on a novel online hashing strategy.  
  Address Cardiff; United Kingdom; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference BMVC  
  Notes CIC; 600.140; 600.118 Approved no  
  Call Number Admin @ si @ GAB2019b Serial 3263  
Permanent link to this record
 

 
Author Sagnik Das; Hassan Ahmed Sial; Ke Ma; Ramon Baldrich; Maria Vanrell; Dimitris Samaras edit   pdf
openurl 
  Title Intrinsic Decomposition of Document Images In-the-Wild Type Conference Article
  Year 2020 Publication (up) 31st British Machine Vision Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Automatic document content processing is affected by artifacts caused by the shape
of the paper, non-uniform and diverse color of lighting conditions. Fully-supervised
methods on real data are impossible due to the large amount of data needed. Hence, the
current state of the art deep learning models are trained on fully or partially synthetic images. However, document shadow or shading removal results still suffer because: (a) prior methods rely on uniformity of local color statistics, which limit their application on real-scenarios with complex document shapes and textures and; (b) synthetic or hybrid datasets with non-realistic, simulated lighting conditions are used to train the models. In this paper we tackle these problems with our two main contributions. First, a physically constrained learning-based method that directly estimates document reflectance based on intrinsic image formation which generalizes to challenging illumination conditions. Second, a new dataset that clearly improves previous synthetic ones, by adding a large range of realistic shading and diverse multi-illuminant conditions, uniquely customized to deal with documents in-the-wild. The proposed architecture works in two steps. First, a white balancing module neutralizes the color of the illumination on the input image. Based on the proposed multi-illuminant dataset we achieve a good white-balancing in really difficult conditions. Second, the shading separation module accurately disentangles the shading and paper material in a self-supervised manner where only the synthetic texture is used as a weak training signal (obviating the need for very costly ground truth with disentangled versions of shading and reflectance). The proposed approach leads to significant generalization of document reflectance estimation in real scenes with challenging illumination. We extensively evaluate on the real benchmark datasets available for intrinsic image decomposition and document shadow removal tasks. Our reflectance estimation scheme, when used as a pre-processing step of an OCR pipeline, shows a 21% improvement of character error rate (CER), thus, proving the practical applicability. The data and code will be available at: https://github.com/cvlab-stonybrook/DocIIW.
 
  Address Virtual; September 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference BMVC  
  Notes CIC; 600.087; 600.140; 600.118 Approved no  
  Call Number Admin @ si @ DSM2020 Serial 3461  
Permanent link to this record
 

 
Author Trevor Canham; Javier Vazquez; D Long; Richard F. Murray; Michael S Brown edit   pdf
openurl 
  Title Noise Prism: A Novel Multispectral Visualization Technique Type Journal Article
  Year 2021 Publication (up) 31st Color and Imaging Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract A novel technique for visualizing multispectral images is proposed. Inspired by how prisms work, our method spreads spectral information over a chromatic noise pattern. This is accomplished by populating the pattern with pixels representing each measurement band at a count proportional to its measured intensity. The method is advantageous because it allows for lightweight encoding and visualization of spectral information
while maintaining the color appearance of the stimulus. A four alternative forced choice (4AFC) experiment was conducted to validate the method’s information-carrying capacity in displaying metameric stimuli of varying colors and spectral basis functions. The scores ranged from 100% to 20% (less than chance given the 4AFC task), with many conditions falling somewhere in between at statistically significant intervals. Using this data, color and texture difference metrics can be evaluated and optimized to predict the legibility of the visualization technique.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CIC  
  Notes MACO; CIC Approved no  
  Call Number Admin @ si @ CVL2021 Serial 4000  
Permanent link to this record
 

 
Author Marcos V Conde; Javier Vazquez; Michael S Brown; Radu TImofte edit   pdf
url  openurl
  Title NILUT: Conditional Neural Implicit 3D Lookup Tables for Image Enhancement Type Conference Article
  Year 2024 Publication (up) 38th AAAI Conference on Artificial Intelligence Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract 3D lookup tables (3D LUTs) are a key component for image enhancement. Modern image signal processors (ISPs) have dedicated support for these as part of the camera rendering pipeline. Cameras typically provide multiple options for picture styles, where each style is usually obtained by applying a unique handcrafted 3D LUT. Current approaches for learning and applying 3D LUTs are notably fast, yet not so memory-efficient, as storing multiple 3D LUTs is required. For this reason and other implementation limitations, their use on mobile devices is less popular. In this work, we propose a Neural Implicit LUT (NILUT), an implicitly defined continuous 3D color transformation parameterized by a neural network. We show that NILUTs are capable of accurately emulating real 3D LUTs. Moreover, a NILUT can be extended to incorporate multiple styles into a single network with the ability to blend styles implicitly. Our novel approach is memory-efficient, controllable and can complement previous methods, including learned ISPs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference AAAI  
  Notes CIC; MACO Approved no  
  Call Number Admin @ si @ CVB2024 Serial 3872  
Permanent link to this record
 

 
Author Eduard Vazquez; Ramon Baldrich; Javier Vazquez; Maria Vanrell edit  openurl
  Title Topological histogram reduction towards colour segmentation Type Book Chapter
  Year 2007 Publication (up) 3rd Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2007), J. Marti et al. (Eds.) LNCS 4477:55–62 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Gerona (Spain)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number CAT @ cat @ VBV2007 Serial 809  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Antonio Lopez; Ramon Baldrich edit   pdf
openurl 
  Title Shadow Resistant Road Segmentation from a Mobile Monocular System Type Conference Article
  Year 2007 Publication (up) 3rd Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2007), J. Marti et al. (Eds.) LNCS 4477:9–16 Abbreviated Journal  
  Volume Issue Pages  
  Keywords road detection  
  Abstract  
  Address Gerona (Spain)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS;CIC Approved no  
  Call Number ADAS @ adas @ ALB2007 Serial 943  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: