Marc Masana, Tinne Tuytelaars, & Joost Van de Weijer. (2021). Ternary Feature Masks: zero-forgetting for task-incremental learning. In 34th IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 3565–3574).
Abstract: We propose an approach without any forgetting to continual learning for the task-aware regime, where at inference the task-label is known. By using ternary masks we can upgrade a model to new tasks, reusing knowledge from previous tasks while not forgetting anything about them. Using masks prevents both catastrophic forgetting and backward transfer. We argue -- and show experimentally -- that avoiding the former largely compensates for the lack of the latter, which is rarely observed in practice. In contrast to earlier works, our masks are applied to the features (activations) of each layer instead of the weights. This considerably reduces the number of mask parameters for each new task; with more than three orders of magnitude for most networks. The encoding of the ternary masks into two bits per feature creates very little overhead to the network, avoiding scalability issues. To allow already learned features to adapt to the current task without changing the behavior of these features for previous tasks, we introduce task-specific feature normalization. Extensive experiments on several finegrained datasets and ImageNet show that our method outperforms current state-of-the-art while reducing memory overhead in comparison to weight-based approaches.
|
|
Shiqi Yang, Yaxing Wang, Joost Van de Weijer, Luis Herranz, & Shangling Jui. (2021). Generalized Source-free Domain Adaptation. In 19th IEEE International Conference on Computer Vision (pp. 8958–8967).
Abstract: Domain adaptation (DA) aims to transfer the knowledge learned from a source domain to an unlabeled target domain. Some recent works tackle source-free domain adaptation (SFDA) where only a source pre-trained model is available for adaptation to the target domain. However, those methods do not consider keeping source performance which is of high practical value in real world applications. In this paper, we propose a new domain adaptation paradigm called Generalized Source-free Domain Adaptation (G-SFDA), where the learned model needs to perform well on both the target and source domains, with only access to current unlabeled target data during adaptation. First, we propose local structure clustering (LSC), aiming to cluster the target features with its semantically similar neighbors, which successfully adapts the model to the target domain in the absence of source data. Second, we propose sparse domain attention (SDA), it produces a binary domain specific attention to activate different feature channels for different domains, meanwhile the domain attention will be utilized to regularize the gradient during adaptation to keep source information. In the experiments, for target performance our method is on par with or better than existing DA and SFDA methods, specifically it achieves state-of-the-art performance (85.4%) on VisDA, and our method works well for all domains after adapting to single or multiple target domains.
|
|
Kai Wang, Luis Herranz, & Joost Van de Weijer. (2021). Continual learning in cross-modal retrieval. In 2nd CLVISION workshop (pp. 3628–3638).
Abstract: Multimodal representations and continual learning are two areas closely related to human intelligence. The former considers the learning of shared representation spaces where information from different modalities can be compared and integrated (we focus on cross-modal retrieval between language and visual representations). The latter studies how to prevent forgetting a previously learned task when learning a new one. While humans excel in these two aspects, deep neural networks are still quite limited. In this paper, we propose a combination of both problems into a continual cross-modal retrieval setting, where we study how the catastrophic interference caused by new tasks impacts the embedding spaces and their cross-modal alignment required for effective retrieval. We propose a general framework that decouples the training, indexing and querying stages. We also identify and study different factors that may lead to forgetting, and propose tools to alleviate it. We found that the indexing stage pays an important role and that simply avoiding reindexing the database with updated embedding networks can lead to significant gains. We evaluated our methods in two image-text retrieval datasets, obtaining significant gains with respect to the fine tuning baseline.
|
|
Aymen Azaza, Joost Van de Weijer, Ali Douik, Javad Zolfaghari Bengar, & Marc Masana. (2020). Saliency from High-Level Semantic Image Features. SN - SN Computer Science, 1–12.
Abstract: Top-down semantic information is known to play an important role in assigning saliency. Recently, large strides have been made in improving state-of-the-art semantic image understanding in the fields of object detection and semantic segmentation. Therefore, since these methods have now reached a high-level of maturity, evaluation of the impact of high-level image understanding on saliency estimation is now feasible. We propose several saliency features which are computed from object detection and semantic segmentation results. We combine these features with a standard baseline method for saliency detection to evaluate their importance. Experiments demonstrate that the proposed features derived from object detection and semantic segmentation improve saliency estimation significantly. Moreover, they show that our method obtains state-of-the-art results on (FT, ImgSal, and SOD datasets) and obtains competitive results on four other datasets (ECSSD, PASCAL-S, MSRA-B, and HKU-IS).
|
|
Lu Yu, Yongmei Cheng, & Joost Van de Weijer. (2018). Weakly Supervised Domain-Specific Color Naming Based on Attention. In 24th International Conference on Pattern Recognition (pp. 3019–3024).
Abstract: The majority of existing color naming methods focuses on the eleven basic color terms of the English language. However, in many applications, different sets of color names are used for the accurate description of objects. Labeling data to learn these domain-specific color names is an expensive and laborious task. Therefore, in this article we aim to learn color names from weakly labeled data. For this purpose, we add an attention branch to the color naming network. The attention branch is used to modulate the pixel-wise color naming predictions of the network. In experiments, we illustrate that the attention branch correctly identifies the relevant regions. Furthermore, we show that our method obtains state-of-the-art results for pixel-wise and image-wise classification on the EBAY dataset and is able to learn color names for various domains.
|
|
Vacit Oguz Yazici, Abel Gonzalez-Garcia, Arnau Ramisa, Bartlomiej Twardowski, & Joost Van de Weijer. (2020). Orderless Recurrent Models for Multi-label Classification. In 33rd IEEE Conference on Computer Vision and Pattern Recognition.
Abstract: Recurrent neural networks (RNN) are popular for many computer vision tasks, including multi-label classification. Since RNNs produce sequential outputs, labels need to be ordered for the multi-label classification task. Current approaches sort labels according to their frequency, typically ordering them in either rare-first or frequent-first. These imposed orderings do not take into account that the natural order to generate the labels can change for each image, e.g.\ first the dominant object before summing up the smaller objects in the image. Therefore, in this paper, we propose ways to dynamically order the ground truth labels with the predicted label sequence. This allows for the faster training of more optimal LSTM models for multi-label classification. Analysis evidences that our method does not suffer from duplicate generation, something which is common for other models. Furthermore, it outperforms other CNN-RNN models, and we show that a standard architecture of an image encoder and language decoder trained with our proposed loss obtains the state-of-the-art results on the challenging MS-COCO, WIDER Attribute and PA-100K and competitive results on NUS-WIDE.
|
|
Vacit Oguz Yazici, Joost Van de Weijer, & Arnau Ramisa. (2018). Color Naming for Multi-Color Fashion Items. In 6th World Conference on Information Systems and Technologies (Vol. 747, pp. 64–73).
Abstract: There exists a significant amount of research on color naming of single colored objects. However in reality many fashion objects consist of multiple colors. Currently, searching in fashion datasets for multi-colored objects can be a laborious task. Therefore, in this paper we focus on color naming for images with multi-color fashion items. We collect a dataset, which consists of images which may have from one up to four colors. We annotate the images with the 11 basic colors of the English language. We experiment with several designs for deep neural networks with different losses. We show that explicitly estimating the number of colors in the fashion item leads to improved results.
Keywords: Deep learning; Color; Multi-label
|
|
Carola Figueroa Flores, Abel Gonzalez-Garcia, Joost Van de Weijer, & Bogdan Raducanu. (2019). Saliency for fine-grained object recognition in domains with scarce training data. PR - Pattern Recognition, 94, 62–73.
Abstract: This paper investigates the role of saliency to improve the classification accuracy of a Convolutional Neural Network (CNN) for the case when scarce training data is available. Our approach consists in adding a saliency branch to an existing CNN architecture which is used to modulate the standard bottom-up visual features from the original image input, acting as an attentional mechanism that guides the feature extraction process. The main aim of the proposed approach is to enable the effective training of a fine-grained recognition model with limited training samples and to improve the performance on the task, thereby alleviating the need to annotate a large dataset. The vast majority of saliency methods are evaluated on their ability to generate saliency maps, and not on their functionality in a complete vision pipeline. Our proposed pipeline allows to evaluate saliency methods for the high-level task of object recognition. We perform extensive experiments on various fine-grained datasets (Flowers, Birds, Cars, and Dogs) under different conditions and show that saliency can considerably improve the network’s performance, especially for the case of scarce training data. Furthermore, our experiments show that saliency methods that obtain improved saliency maps (as measured by traditional saliency benchmarks) also translate to saliency methods that yield improved performance gains when applied in an object recognition pipeline.
|
|
Lichao Zhang, Abel Gonzalez-Garcia, Joost Van de Weijer, Martin Danelljan, & Fahad Shahbaz Khan. (2019). Learning the Model Update for Siamese Trackers. In 18th IEEE International Conference on Computer Vision (pp. 4009–4018).
Abstract: Siamese approaches address the visual tracking problem by extracting an appearance template from the current frame, which is used to localize the target in the next frame. In general, this template is linearly combined with the accumulated template from the previous frame, resulting in an exponential decay of information over time. While such an approach to updating has led to improved results, its simplicity limits the potential gain likely to be obtained by learning to update. Therefore, we propose to replace the handcrafted update function with a method which learns to update. We use a convolutional neural network, called UpdateNet, which given the initial template, the accumulated template and the template of the current frame aims to estimate the optimal template for the next frame. The UpdateNet is compact and can easily be integrated into existing Siamese trackers. We demonstrate the generality of the proposed approach by applying it to two Siamese trackers, SiamFC and DaSiamRPN. Extensive experiments on VOT2016, VOT2018, LaSOT, and TrackingNet datasets demonstrate that our UpdateNet effectively predicts the new target template, outperforming the standard linear update. On the large-scale TrackingNet dataset, our UpdateNet improves the results of DaSiamRPN with an absolute gain of 3.9% in terms of success score.
|
|
Lichao Zhang, Martin Danelljan, Abel Gonzalez-Garcia, Joost Van de Weijer, & Fahad Shahbaz Khan. (2019). Multi-Modal Fusion for End-to-End RGB-T Tracking. In IEEE International Conference on Computer Vision Workshops (pp. 2252–2261).
Abstract: We propose an end-to-end tracking framework for fusing the RGB and TIR modalities in RGB-T tracking. Our baseline tracker is DiMP (Discriminative Model Prediction), which employs a carefully designed target prediction network trained end-to-end using a discriminative loss. We analyze the effectiveness of modality fusion in each of the main components in DiMP, i.e. feature extractor, target estimation network, and classifier. We consider several fusion mechanisms acting at different levels of the framework, including pixel-level, feature-level and response-level. Our tracker is trained in an end-to-end manner, enabling the components to learn how to fuse the information from both modalities. As data to train our model, we generate a large-scale RGB-T dataset by considering an annotated RGB tracking dataset (GOT-10k) and synthesizing paired TIR images using an image-to-image translation approach. We perform extensive experiments on VOT-RGBT2019 dataset and RGBT210 dataset, evaluating each type of modality fusing on each model component. The results show that the proposed fusion mechanisms improve the performance of the single modality counterparts. We obtain our best results when fusing at the feature-level on both the IoU-Net and the model predictor, obtaining an EAO score of 0.391 on VOT-RGBT2019 dataset. With this fusion mechanism we achieve the state-of-the-art performance on RGBT210 dataset.
|
|
Yaxing Wang, Abel Gonzalez-Garcia, David Berga, Luis Herranz, Fahad Shahbaz Khan, & Joost Van de Weijer. (2020). MineGAN: effective knowledge transfer from GANs to target domains with few images. In 33rd IEEE Conference on Computer Vision and Pattern Recognition.
Abstract: One of the attractive characteristics of deep neural networks is their ability to transfer knowledge obtained in one domain to other related domains. As a result, high-quality networks can be trained in domains with relatively little training data. This property has been extensively studied for discriminative networks but has received significantly less attention for generative models. Given the often enormous effort required to train GANs, both computationally as well as in the dataset collection, the re-use of pretrained GANs is a desirable objective. We propose a novel knowledge transfer method for generative models based on mining the knowledge that is most beneficial to a specific target domain, either from a single or multiple pretrained GANs. This is done using a miner network that identifies which part of the generative distribution of each pretrained GAN outputs samples closest to the target domain. Mining effectively steers GAN sampling towards suitable regions of the latent space, which facilitates the posterior finetuning and avoids pathologies of other methods such as mode collapse and lack of flexibility. We perform experiments on several complex datasets using various GAN architectures (BigGAN, Progressive GAN) and show that the proposed method, called MineGAN, effectively transfers knowledge to domains with few target images, outperforming existing methods. In addition, MineGAN can successfully transfer knowledge from multiple pretrained GANs.
|
|
Rada Deeb, Damien Muselet, Mathieu Hebert, Alain Tremeau, & Joost Van de Weijer. (2017). 3D color charts for camera spectral sensitivity estimation. In 28th British Machine Vision Conference.
Abstract: Estimating spectral data such as camera sensor responses or illuminant spectral power distribution from raw RGB camera outputs is crucial in many computer vision applications.
Usually, 2D color charts with various patches of known spectral reflectance are
used as reference for such purpose. Deducing n-D spectral data (n»3) from 3D RGB inputs is an ill-posed problem that requires a high number of inputs. Unfortunately, most of the natural color surfaces have spectral reflectances that are well described by low-dimensional linear models, i.e. each spectral reflectance can be approximated by a weighted sum of the others. It has been shown that adding patches to color charts does not help in practice, because the information they add is redundant with the information provided by the first set of patches. In this paper, we propose to use spectral data of
higher dimensionality by using 3D color charts that create inter-reflections between the surfaces. These inter-reflections produce multiplications between natural spectral curves and so provide non-linear spectral curves. We show that such data provide enough information for accurate spectral data estimation.
|
|
Marco Buzzelli, Joost Van de Weijer, & Raimondo Schettini. (2018). Learning Illuminant Estimation from Object Recognition. In 25th International Conference on Image Processing (pp. 3234–3238).
Abstract: In this paper we present a deep learning method to estimate the illuminant of an image. Our model is not trained with illuminant annotations, but with the objective of improving performance on an auxiliary task such as object recognition. To the best of our knowledge, this is the first example of a deep
learning architecture for illuminant estimation that is trained without ground truth illuminants. We evaluate our solution on standard datasets for color constancy, and compare it with state of the art methods. Our proposal is shown to outperform most deep learning methods in a cross-dataset evaluation
setup, and to present competitive results in a comparison with parametric solutions.
Keywords: Illuminant estimation; computational color constancy; semi-supervised learning; deep learning; convolutional neural networks
|
|
Lu Yu, Vacit Oguz Yazici, Xialei Liu, Joost Van de Weijer, Yongmei Cheng, & Arnau Ramisa. (2019). Learning Metrics from Teachers: Compact Networks for Image Embedding. In 32nd IEEE Conference on Computer Vision and Pattern Recognition (pp. 2907–2916).
Abstract: Metric learning networks are used to compute image embeddings, which are widely used in many applications such as image retrieval and face recognition. In this paper, we propose to use network distillation to efficiently compute image embeddings with small networks. Network distillation has been successfully applied to improve image classification, but has hardly been explored for metric learning. To do so, we propose two new loss functions that model the
communication of a deep teacher network to a small student network. We evaluate our system in several datasets, including CUB-200-2011, Cars-196, Stanford Online Products and show that embeddings computed using small student networks perform significantly better than those computed using standard networks of similar size. Results on a very compact network (MobileNet-0.25), which can be
used on mobile devices, show that the proposed method can greatly improve Recall@1 results from 27.5% to 44.6%. Furthermore, we investigate various aspects of distillation for embeddings, including hint and attention layers, semisupervised learning and cross quality distillation.
|
|
Aitor Alvarez-Gila, Adrian Galdran, Estibaliz Garrote, & Joost Van de Weijer. (2019). Self-supervised blur detection from synthetically blurred scenes. IMAVIS - Image and Vision Computing, 92, 103804.
Abstract: Blur detection aims at segmenting the blurred areas of a given image. Recent deep learning-based methods approach this problem by learning an end-to-end mapping between the blurred input and a binary mask representing the localization of its blurred areas. Nevertheless, the effectiveness of such deep models is limited due to the scarcity of datasets annotated in terms of blur segmentation, as blur annotation is labor intensive. In this work, we bypass the need for such annotated datasets for end-to-end learning, and instead rely on object proposals and a model for blur generation in order to produce a dataset of synthetically blurred images. This allows us to perform self-supervised learning over the generated image and ground truth blur mask pairs using CNNs, defining a framework that can be employed in purely self-supervised, weakly supervised or semi-supervised configurations. Interestingly, experimental results of such setups over the largest blur segmentation datasets available show that this approach achieves state of the art results in blur segmentation, even without ever observing any real blurred image.
|
|
Aymen Azaza, Joost Van de Weijer, Ali Douik, & Marc Masana. (2018). Context Proposals for Saliency Detection. CVIU - Computer Vision and Image Understanding, 174, 1–11.
Abstract: One of the fundamental properties of a salient object region is its contrast
with the immediate context. The problem is that numerous object regions
exist which potentially can all be salient. One way to prevent an exhaustive
search over all object regions is by using object proposal algorithms. These
return a limited set of regions which are most likely to contain an object. Several saliency estimation methods have used object proposals. However, they focus on the saliency of the proposal only, and the importance of its immediate context has not been evaluated.
In this paper, we aim to improve salient object detection. Therefore, we extend object proposal methods with context proposals, which allow to incorporate the immediate context in the saliency computation. We propose several saliency features which are computed from the context proposals. In the experiments, we evaluate five object proposal methods for the task of saliency segmentation, and find that Multiscale Combinatorial Grouping outperforms the others. Furthermore, experiments show that the proposed context features improve performance, and that our method matches results on the FT datasets and obtains competitive results on three other datasets (PASCAL-S, MSRA-B and ECSSD).
|
|
Yaxing Wang, Luis Herranz, & Joost Van de Weijer. (2020). Mix and match networks: multi-domain alignment for unpaired image-to-image translation. IJCV - International Journal of Computer Vision, 128, 2849–2872.
Abstract: This paper addresses the problem of inferring unseen cross-modal image-to-image translations between multiple modalities. We assume that only some of the pairwise translations have been seen (i.e. trained) and infer the remaining unseen translations (where training pairs are not available). We propose mix and match networks, an approach where multiple encoders and decoders are aligned in such a way that the desired translation can be obtained by simply cascading the source encoder and the target decoder, even when they have not interacted during the training stage (i.e. unseen). The main challenge lies in the alignment of the latent representations at the bottlenecks of encoder-decoder pairs. We propose an architecture with several tools to encourage alignment, including autoencoders and robust side information and latent consistency losses. We show the benefits of our approach in terms of effectiveness and scalability compared with other pairwise image-to-image translation approaches. We also propose zero-pair cross-modal image translation, a challenging setting where the objective is inferring semantic segmentation from depth (and vice-versa) without explicit segmentation-depth pairs, and only from two (disjoint) segmentation-RGB and depth-RGB training sets. We observe that a certain part of the shared information between unseen modalities might not be reachable, so we further propose a variant that leverages pseudo-pairs which allows us to exploit this shared information between the unseen modalities
|
|
Yaxing Wang, Chenshen Wu, Luis Herranz, Joost Van de Weijer, Abel Gonzalez-Garcia, & Bogdan Raducanu. (2018). Transferring GANs: generating images from limited data. In 15th European Conference on Computer Vision (Vol. 11210, pp. 220–236). LNCS.
Abstract: ransferring knowledge of pre-trained networks to new domains by means of fine-tuning is a widely used practice for applications based on discriminative models. To the best of our knowledge this practice has not been studied within the context of generative deep networks. Therefore, we study domain adaptation applied to image generation with generative adversarial networks. We evaluate several aspects of domain adaptation, including the impact of target domain size, the relative distance between source and target domain, and the initialization of conditional GANs. Our results show that using knowledge from pre-trained networks can shorten the convergence time and can significantly improve the quality of the generated images, especially when target data is limited. We show that these conclusions can also be drawn for conditional GANs even when the pre-trained model was trained without conditioning. Our results also suggest that density is more important than diversity and a dataset with one or few densely sampled classes is a better source model than more diverse datasets such as ImageNet or Places.
Keywords: Generative adversarial networks; Transfer learning; Domain adaptation; Image generation
|
|