toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author M. Danelljan; Fahad Shahbaz Khan; Michael Felsberg; Joost Van de Weijer edit   pdf
doi  openurl
  Title Adaptive color attributes for real-time visual tracking Type Conference Article
  Year 2014 Publication 27th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 1090 - 1097  
  Keywords  
  Abstract Visual tracking is a challenging problem in computer vision. Most state-of-the-art visual trackers either rely on luminance information or use simple color representations for image description. Contrary to visual tracking, for object
recognition and detection, sophisticated color features when combined with luminance have shown to provide excellent performance. Due to the complexity of the tracking problem, the desired color feature should be computationally
efficient, and possess a certain amount of photometric invariance while maintaining high discriminative power.
This paper investigates the contribution of color in a tracking-by-detection framework. Our results suggest that color attributes provides superior performance for visual tracking. We further propose an adaptive low-dimensional
variant of color attributes. Both quantitative and attributebased evaluations are performed on 41 challenging benchmark color sequences. The proposed approach improves the baseline intensity-based tracker by 24% in median distance precision. Furthermore, we show that our approach outperforms
state-of-the-art tracking methods while running at more than 100 frames per second.
 
  Address Nottingham; UK; September 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes (down) CIC; LAMP; 600.074; 600.079 Approved no  
  Call Number Admin @ si @ DKF2014 Serial 2509  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Shida Beigpour; Joost Van de Weijer; Michael Felsberg edit  doi
openurl 
  Title Painting-91: A Large Scale Database for Computational Painting Categorization Type Journal Article
  Year 2014 Publication Machine Vision and Applications Abbreviated Journal MVAP  
  Volume 25 Issue 6 Pages 1385-1397  
  Keywords  
  Abstract Computer analysis of visual art, especially paintings, is an interesting cross-disciplinary research domain. Most of the research in the analysis of paintings involve medium to small range datasets with own specific settings. Interestingly, significant progress has been made in the field of object and scene recognition lately. A key factor in this success is the introduction and availability of benchmark datasets for evaluation. Surprisingly, such a benchmark setup is still missing in the area of computational painting categorization. In this work, we propose a novel large scale dataset of digital paintings. The dataset consists of paintings from 91 different painters. We further show three applications of our dataset namely: artist categorization, style classification and saliency detection. We investigate how local and global features popular in image classification perform for the tasks of artist and style categorization. For both categorization tasks, our experimental results suggest that combining multiple features significantly improves the final performance. We show that state-of-the-art computer vision methods can correctly classify 50 % of unseen paintings to its painter in a large dataset and correctly attribute its artistic style in over 60 % of the cases. Additionally, we explore the task of saliency detection on paintings and show experimental findings using state-of-the-art saliency estimation algorithms.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0932-8092 ISBN Medium  
  Area Expedition Conference  
  Notes (down) CIC; LAMP; 600.074; 600.079 Approved no  
  Call Number Admin @ si @ KBW2014 Serial 2510  
Permanent link to this record
 

 
Author Bojana Gajic; Ariel Amato; Ramon Baldrich; Joost Van de Weijer; Carlo Gatta edit   pdf
doi  openurl
  Title Area Under the ROC Curve Maximization for Metric Learning Type Conference Article
  Year 2022 Publication CVPR 2022 Workshop on Efficien Deep Learning for Computer Vision (ECV 2022, 5th Edition) Abbreviated Journal  
  Volume Issue Pages  
  Keywords Training; Computer vision; Conferences; Area measurement; Benchmark testing; Pattern recognition  
  Abstract Most popular metric learning losses have no direct relation with the evaluation metrics that are subsequently applied to evaluate their performance. We hypothesize that training a metric learning model by maximizing the area under the ROC curve (which is a typical performance measure of recognition systems) can induce an implicit ranking suitable for retrieval problems. This hypothesis is supported by previous work that proved that a curve dominates in ROC space if and only if it dominates in Precision-Recall space. To test this hypothesis, we design and maximize an approximated, derivable relaxation of the area under the ROC curve. The proposed AUC loss achieves state-of-the-art results on two large scale retrieval benchmark datasets (Stanford Online Products and DeepFashion In-Shop). Moreover, the AUC loss achieves comparable performance to more complex, domain specific, state-of-the-art methods for vehicle re-identification.  
  Address New Orleans, USA; 20 June 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes (down) CIC; LAMP; Approved no  
  Call Number Admin @ si @ GAB2022 Serial 3700  
Permanent link to this record
 

 
Author C. Alejandro Parraga; Jordi Roca; Dimosthenis Karatzas; Sophie Wuerger edit   pdf
url  doi
openurl 
  Title Limitations of visual gamma corrections in LCD displays Type Journal Article
  Year 2014 Publication Displays Abbreviated Journal Dis  
  Volume 35 Issue 5 Pages 227–239  
  Keywords Display calibration; Psychophysics; Perceptual; Visual gamma correction; Luminance matching; Observer-based calibration  
  Abstract A method for estimating the non-linear gamma transfer function of liquid–crystal displays (LCDs) without the need of a photometric measurement device was described by Xiao et al. (2011) [1]. It relies on observer’s judgments of visual luminance by presenting eight half-tone patterns with luminances from 1/9 to 8/9 of the maximum value of each colour channel. These half-tone patterns were distributed over the screen both over the vertical and horizontal viewing axes. We conducted a series of photometric and psychophysical measurements (consisting in the simultaneous presentation of half-tone patterns in each trial) to evaluate whether the angular dependency of the light generated by three different LCD technologies would bias the results of these gamma transfer function estimations. Our results show that there are significant differences between the gamma transfer functions measured and produced by observers at different viewing angles. We suggest appropriate modifications to the Xiao et al. paradigm to counterbalance these artefacts which also have the advantage of shortening the amount of time spent in collecting the psychophysical measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) CIC; DAG; 600.052; 600.077; 600.074 Approved no  
  Call Number Admin @ si @ PRK2014 Serial 2511  
Permanent link to this record
 

 
Author Rahat Khan; Joost Van de Weijer; Dimosthenis Karatzas; Damien Muselet edit   pdf
doi  openurl
  Title Towards multispectral data acquisition with hand-held devices Type Conference Article
  Year 2013 Publication 20th IEEE International Conference on Image Processing Abbreviated Journal  
  Volume Issue Pages 2053 - 2057  
  Keywords Multispectral; mobile devices; color measurements  
  Abstract We propose a method to acquire multispectral data with handheld devices with front-mounted RGB cameras. We propose to use the display of the device as an illuminant while the camera captures images illuminated by the red, green and
blue primaries of the display. Three illuminants and three response functions of the camera lead to nine response values which are used for reflectance estimation. Results are promising and show that the accuracy of the spectral reconstruction improves in the range from 30-40% over the spectral
reconstruction based on a single illuminant. Furthermore, we propose to compute sensor-illuminant aware linear basis by discarding the part of the reflectances that falls in the sensorilluminant null-space. We show experimentally that optimizing reflectance estimation on these new basis functions decreases
the RMSE significantly over basis functions that are independent to sensor-illuminant. We conclude that, multispectral data acquisition is potentially possible with consumer hand-held devices such as tablets, mobiles, and laptops, opening up applications which are currently considered to be unrealistic.
 
  Address Melbourne; Australia; September 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICIP  
  Notes (down) CIC; DAG; 600.048 Approved no  
  Call Number Admin @ si @ KWK2013b Serial 2265  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Muhammad Anwer Rao; Joost Van de Weijer; Andrew Bagdanov; Antonio Lopez; Michael Felsberg edit   pdf
doi  openurl
  Title Coloring Action Recognition in Still Images Type Journal Article
  Year 2013 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 105 Issue 3 Pages 205-221  
  Keywords  
  Abstract In this article we investigate the problem of human action recognition in static images. By action recognition we intend a class of problems which includes both action classification and action detection (i.e. simultaneous localization and classification). Bag-of-words image representations yield promising results for action classification, and deformable part models perform very well object detection. The representations for action recognition typically use only shape cues and ignore color information. Inspired by the recent success of color in image classification and object detection, we investigate the potential of color for action classification and detection in static images. We perform a comprehensive evaluation of color descriptors and fusion approaches for action recognition. Experiments were conducted on the three datasets most used for benchmarking action recognition in still images: Willow, PASCAL VOC 2010 and Stanford-40. Our experiments demonstrate that incorporating color information considerably improves recognition performance, and that a descriptor based on color names outperforms pure color descriptors. Our experiments demonstrate that late fusion of color and shape information outperforms other approaches on action recognition. Finally, we show that the different color–shape fusion approaches result in complementary information and combining them yields state-of-the-art performance for action classification.  
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5691 ISBN Medium  
  Area Expedition Conference  
  Notes (down) CIC; ADAS; 600.057; 600.048 Approved no  
  Call Number Admin @ si @ KRW2013 Serial 2285  
Permanent link to this record
 

 
Author Joost Van de Weijer; Fahad Shahbaz Khan; Marc Masana edit   pdf
doi  isbn
openurl 
  Title Interactive Visual and Semantic Image Retrieval Type Book Chapter
  Year 2013 Publication Multimodal Interaction in Image and Video Applications Abbreviated Journal  
  Volume 48 Issue Pages 31-35  
  Keywords  
  Abstract One direct consequence of recent advances in digital visual data generation and the direct availability of this information through the World-Wide Web, is a urgent demand for efficient image retrieval systems. The objective of image retrieval is to allow users to efficiently browse through this abundance of images. Due to the non-expert nature of the majority of the internet users, such systems should be user friendly, and therefore avoid complex user interfaces. In this chapter we investigate how high-level information provided by recently developed object recognition techniques can improve interactive image retrieval. Wel apply a bagof- word based image representation method to automatically classify images in a number of categories. These additional labels are then applied to improve the image retrieval system. Next to these high-level semantic labels, we also apply a low-level image description to describe the composition and color scheme of the scene. Both descriptions are incorporated in a user feedback image retrieval setting. The main objective is to show that automatic labeling of images with semantic labels can improve image retrieval results.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor Angel Sappa; Jordi Vitria  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1868-4394 ISBN 978-3-642-35931-6 Medium  
  Area Expedition Conference  
  Notes (down) CIC; 605.203; 600.048 Approved no  
  Call Number Admin @ si @ WKC2013 Serial 2284  
Permanent link to this record
 

 
Author Hassan Ahmed Sial; Ramon Baldrich; Maria Vanrell edit   pdf
url  openurl
  Title Deep intrinsic decomposition trained on surreal scenes yet with realistic light effects Type Journal Article
  Year 2020 Publication Journal of the Optical Society of America A Abbreviated Journal JOSA A  
  Volume 37 Issue 1 Pages 1-15  
  Keywords  
  Abstract Estimation of intrinsic images still remains a challenging task due to weaknesses of ground-truth datasets, which either are too small or present non-realistic issues. On the other hand, end-to-end deep learning architectures start to achieve interesting results that we believe could be improved if important physical hints were not ignored. In this work, we present a twofold framework: (a) a flexible generation of images overcoming some classical dataset problems such as larger size jointly with coherent lighting appearance; and (b) a flexible architecture tying physical properties through intrinsic losses. Our proposal is versatile, presents low computation time, and achieves state-of-the-art results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) CIC; 600.140; 600.12; 600.118 Approved no  
  Call Number Admin @ si @ SBV2019 Serial 3311  
Permanent link to this record
 

 
Author Bojana Gajic; Ariel Amato; Ramon Baldrich; Carlo Gatta edit   pdf
openurl 
  Title Bag of Negatives for Siamese Architectures Type Conference Article
  Year 2019 Publication 30th British Machine Vision Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Training a Siamese architecture for re-identification with a large number of identities is a challenging task due to the difficulty of finding relevant negative samples efficiently. In this work we present Bag of Negatives (BoN), a method for accelerated and improved training of Siamese networks that scales well on datasets with a very large number of identities. BoN is an efficient and loss-independent method, able to select a bag of high quality negatives, based on a novel online hashing strategy.  
  Address Cardiff; United Kingdom; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference BMVC  
  Notes (down) CIC; 600.140; 600.118 Approved no  
  Call Number Admin @ si @ GAB2019b Serial 3263  
Permanent link to this record
 

 
Author Hassan Ahmed Sial; Ramon Baldrich; Maria Vanrell; Dimitris Samaras edit   pdf
openurl 
  Title Light Direction and Color Estimation from Single Image with Deep Regression Type Conference Article
  Year 2020 Publication London Imaging Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract We present a method to estimate the direction and color of the scene light source from a single image. Our method is based on two main ideas: (a) we use a new synthetic dataset with strong shadow effects with similar constraints to the SID dataset; (b) we define a deep architecture trained on the mentioned dataset to estimate the direction and color of the scene light source. Apart from showing good performance on synthetic images, we additionally propose a preliminary procedure to obtain light positions of the Multi-Illumination dataset, and, in this way, we also prove that our trained model achieves good performance when it is applied to real scenes.  
  Address Virtual; September 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference LIM  
  Notes (down) CIC; 600.118; 600.140; Approved no  
  Call Number Admin @ si @ SBV2020 Serial 3460  
Permanent link to this record
 

 
Author Ivet Rafegas; Maria Vanrell; Luis A Alexandre; G. Arias edit   pdf
url  openurl
  Title Understanding trained CNNs by indexing neuron selectivity Type Journal Article
  Year 2020 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 136 Issue Pages 318-325  
  Keywords  
  Abstract The impressive performance of Convolutional Neural Networks (CNNs) when solving different vision problems is shadowed by their black-box nature and our consequent lack of understanding of the representations they build and how these representations are organized. To help understanding these issues, we propose to describe the activity of individual neurons by their Neuron Feature visualization and quantify their inherent selectivity with two specific properties. We explore selectivity indexes for: an image feature (color); and an image label (class membership). Our contribution is a framework to seek or classify neurons by indexing on these selectivity properties. It helps to find color selective neurons, such as a red-mushroom neuron in layer Conv4 or class selective neurons such as dog-face neurons in layer Conv5 in VGG-M, and establishes a methodology to derive other selectivity properties. Indexing on neuron selectivity can statistically draw how features and classes are represented through layers in a moment when the size of trained nets is growing and automatic tools to index neurons can be helpful.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) CIC; 600.087; 600.140; 600.118 Approved no  
  Call Number Admin @ si @ RVL2019 Serial 3310  
Permanent link to this record
 

 
Author Sagnik Das; Hassan Ahmed Sial; Ke Ma; Ramon Baldrich; Maria Vanrell; Dimitris Samaras edit   pdf
openurl 
  Title Intrinsic Decomposition of Document Images In-the-Wild Type Conference Article
  Year 2020 Publication 31st British Machine Vision Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Automatic document content processing is affected by artifacts caused by the shape
of the paper, non-uniform and diverse color of lighting conditions. Fully-supervised
methods on real data are impossible due to the large amount of data needed. Hence, the
current state of the art deep learning models are trained on fully or partially synthetic images. However, document shadow or shading removal results still suffer because: (a) prior methods rely on uniformity of local color statistics, which limit their application on real-scenarios with complex document shapes and textures and; (b) synthetic or hybrid datasets with non-realistic, simulated lighting conditions are used to train the models. In this paper we tackle these problems with our two main contributions. First, a physically constrained learning-based method that directly estimates document reflectance based on intrinsic image formation which generalizes to challenging illumination conditions. Second, a new dataset that clearly improves previous synthetic ones, by adding a large range of realistic shading and diverse multi-illuminant conditions, uniquely customized to deal with documents in-the-wild. The proposed architecture works in two steps. First, a white balancing module neutralizes the color of the illumination on the input image. Based on the proposed multi-illuminant dataset we achieve a good white-balancing in really difficult conditions. Second, the shading separation module accurately disentangles the shading and paper material in a self-supervised manner where only the synthetic texture is used as a weak training signal (obviating the need for very costly ground truth with disentangled versions of shading and reflectance). The proposed approach leads to significant generalization of document reflectance estimation in real scenes with challenging illumination. We extensively evaluate on the real benchmark datasets available for intrinsic image decomposition and document shadow removal tasks. Our reflectance estimation scheme, when used as a pre-processing step of an OCR pipeline, shows a 21% improvement of character error rate (CER), thus, proving the practical applicability. The data and code will be available at: https://github.com/cvlab-stonybrook/DocIIW.
 
  Address Virtual; September 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference BMVC  
  Notes (down) CIC; 600.087; 600.140; 600.118 Approved no  
  Call Number Admin @ si @ DSM2020 Serial 3461  
Permanent link to this record
 

 
Author Ivet Rafegas; Maria Vanrell edit   pdf
openurl 
  Title Color representation in CNNs: parallelisms with biological vision Type Conference Article
  Year 2017 Publication ICCV Workshop on Mutual Benefits ofr Cognitive and Computer Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Convolutional Neural Networks (CNNs) trained for object recognition tasks present representational capabilities approaching to primate visual systems [1]. This provides a computational framework to explore how image features
are efficiently represented. Here, we dissect a trained CNN
[2] to study how color is represented. We use a classical methodology used in physiology that is measuring index of selectivity of individual neurons to specific features. We use ImageNet Dataset [20] images and synthetic versions
of them to quantify color tuning properties of artificial neurons to provide a classification of the network population.
We conclude three main levels of color representation showing some parallelisms with biological visual systems: (a) a decomposition in a circular hue space to represent single color regions with a wider hue sampling beyond the first
layer (V2), (b) the emergence of opponent low-dimensional spaces in early stages to represent color edges (V1); and (c) a strong entanglement between color and shape patterns representing object-parts (e.g. wheel of a car), objectshapes (e.g. faces) or object-surrounds configurations (e.g. blue sky surrounding an object) in deeper layers (V4 or IT).
 
  Address Venice; Italy; October 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCV-MBCC  
  Notes (down) CIC; 600.087; 600.051 Approved no  
  Call Number Admin @ si @ RaV2017 Serial 2984  
Permanent link to this record
 

 
Author Ivet Rafegas; Javier Vazquez; Robert Benavente; Maria Vanrell; Susana Alvarez edit  url
openurl 
  Title Enhancing spatio-chromatic representation with more-than-three color coding for image description Type Journal Article
  Year 2017 Publication Journal of the Optical Society of America A Abbreviated Journal JOSA A  
  Volume 34 Issue 5 Pages 827-837  
  Keywords  
  Abstract Extraction of spatio-chromatic features from color images is usually performed independently on each color channel. Usual 3D color spaces, such as RGB, present a high inter-channel correlation for natural images. This correlation can be reduced using color-opponent representations, but the spatial structure of regions with small color differences is not fully captured in two generic Red-Green and Blue-Yellow channels. To overcome these problems, we propose a new color coding that is adapted to the specific content of each image. Our proposal is based on two steps: (a) setting the number of channels to the number of distinctive colors we find in each image (avoiding the problem of channel correlation), and (b) building a channel representation that maximizes contrast differences within each color channel (avoiding the problem of low local contrast). We call this approach more-than-three color coding (MTT) to enhance the fact that the number of channels is adapted to the image content. The higher color complexity an image has, the more channels can be used to represent it. Here we select distinctive colors as the most predominant in the image, which we call color pivots, and we build the new color coding using these color pivots as a basis. To evaluate the proposed approach we measure its efficiency in an image categorization task. We show how a generic descriptor improves its performance at the description level when applied on the MTT coding.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) CIC; 600.087 Approved no  
  Call Number Admin @ si @ RVB2017 Serial 2892  
Permanent link to this record
 

 
Author Bojana Gajic; Ramon Baldrich edit  doi
openurl 
  Title Cross-domain fashion image retrieval Type Conference Article
  Year 2018 Publication CVPR 2018 Workshop on Women in Computer Vision (WiCV 2018, 4th Edition) Abbreviated Journal  
  Volume Issue Pages 19500-19502  
  Keywords  
  Abstract Cross domain image retrieval is a challenging task that implies matching images from one domain to their pairs from another domain. In this paper we focus on fashion image retrieval, which involves matching an image of a fashion item taken by users, to the images of the same item taken in controlled condition, usually by professional photographer. When facing this problem, we have different products
in train and test time, and we use triplet loss to train the network. We stress the importance of proper training of simple architecture, as well as adapting general models to the specific task.
 
  Address Salt Lake City, USA; 22 June 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes (down) CIC; 600.087 Approved no  
  Call Number Admin @ si @ Serial 3709  
Permanent link to this record
 

 
Author Bojana Gajic; Eduard Vazquez; Ramon Baldrich edit  url
openurl 
  Title Evaluation of Deep Image Descriptors for Texture Retrieval Type Conference Article
  Year 2017 Publication Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2017) Abbreviated Journal  
  Volume Issue Pages 251-257  
  Keywords Texture Representation; Texture Retrieval; Convolutional Neural Networks; Psychophysical Evaluation  
  Abstract The increasing complexity learnt in the layers of a Convolutional Neural Network has proven to be of great help for the task of classification. The topic has received great attention in recently published literature.
Nonetheless, just a handful of works study low-level representations, commonly associated with lower layers. In this paper, we explore recent findings which conclude, counterintuitively, the last layer of the VGG convolutional network is the best to describe a low-level property such as texture. To shed some light on this issue, we are proposing a psychophysical experiment to evaluate the adequacy of different layers of the VGG network for texture retrieval. Results obtained suggest that, whereas the last convolutional layer is a good choice for a specific task of classification, it might not be the best choice as a texture descriptor, showing a very poor performance on texture retrieval. Intermediate layers show the best performance, showing a good combination of basic filters, as in the primary visual cortex, and also a degree of higher level information to describe more complex textures.
 
  Address Porto, Portugal; 27 February – 1 March 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference VISIGRAPP  
  Notes (down) CIC; 600.087 Approved no  
  Call Number Admin @ si @ Serial 3710  
Permanent link to this record
 

 
Author C. Alejandro Parraga edit  doi
isbn  openurl
  Title Color Vision, Computational Methods for Type Book Chapter
  Year 2014 Publication Encyclopedia of Computational Neuroscience Abbreviated Journal  
  Volume Issue Pages 1-11  
  Keywords Color computational vision; Computational neuroscience of color  
  Abstract The study of color vision has been aided by a whole battery of computational methods that attempt to describe the mechanisms that lead to our perception of colors in terms of the information-processing properties of the visual system. Their scope is highly interdisciplinary, linking apparently dissimilar disciplines such as mathematics, physics, computer science, neuroscience, cognitive science, and psychology. Since the sensation of color is a feature of our brains, computational approaches usually include biological features of neural systems in their descriptions, from retinal light-receptor interaction to subcortical color opponency, cortical signal decoding, and color categorization. They produce hypotheses that are usually tested by behavioral or psychophysical experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Berlin Heidelberg Place of Publication Editor Dieter Jaeger; Ranu Jung  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4614-7320-6 Medium  
  Area Expedition Conference  
  Notes (down) CIC; 600.074 Approved no  
  Call Number Admin @ si @ Par2014 Serial 2512  
Permanent link to this record
 

 
Author Ricard Balague edit  openurl
  Title Exploring the combination of color cues for intrinsic image decomposition Type Report
  Year 2014 Publication CVC Technical Report Abbreviated Journal  
  Volume 178 Issue Pages  
  Keywords  
  Abstract Intrinsic image decomposition is a challenging problem that consists in separating an image into its physical characteristics: reflectance and shading. This problem can be solved in different ways, but most methods have combined information from several visual cues. In this work we describe an extension of an existing method proposed by Serra et al. which considers two color descriptors and combines them by means of a Markov Random Field. We analyze in depth the weak points of the method and we explore more possibilities to use in both descriptors. The proposed extension depends on the combination of the cues considered to overcome some of the limitations of the original method. Our approach is tested on the MIT dataset and Beigpour et al. dataset, which contain images of real objects acquired under controlled conditions and synthetic images respectively, with their corresponding ground truth.  
  Address UAB; September 2014  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) CIC; 600.074 Approved no  
  Call Number Admin @ si @ Bal2014 Serial 2579  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: