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Abstract
We present a method to estimate the direction and color of a
scene light source from a single image. Our method is based on
two main ideas: (a) we use a new synthetic dataset with strong
shadow effects with similar constraints to SID dataset; (b) we
define a deep architecture trained on the mentioned dataset to
estimate direction and color of the scene light source. Apart from
showing a good performance on synthetic images, we addition-
ally propose a preliminary procedure to obtain light positions of
the Multi-Illumination dataset, and, in this way, we also prove
that our trained model achieves a good performance when it is
applied to real scenes.

Introduction
Scene appearance is directly dependent on the light source prop-
erties, such as the spectral composition of emitted light, and the
position and direction of the light source, whose interaction with
the scene objects provoke shaded surfaces or dark cast shadows
that become essential visual cues to understand image content.
Estimating the properties of the light conditions from a single
image is an initial step to improve subsequent computer vision
algorithms for image understanding. In this paper we perform a
preliminary study to estimate color and position of light in a sim-
ple and unified approach, that is based on the shading properties
of the image where we assume a single scene illuminant.

Estimating the color of the light from a single image has
been focus of attention in previous research. Computational
color constancy (CC) has been studied in a large number of works
[8, 7, 12] where the problem was tackled from different points
of views [12]. A first approach was to extract statistics from
RGB image values under different assumptions to estimate the
canonical white. A second approach was to introduce spatio-
statistical information like gradients or frequency content of the
image. One last group of CC algorithms was to try to get the in-
formation from physical cues of the image (highlights, shadows,
inter-reflections, etc). In the last years, new approaches have
been based on deep learning frameworks where the solution is
driven by the data with physical constrains in the loss functions.
An updated comprehensive compendium and comparison of CC
algorithm performances can be found in [4, 16, 5, 27]. In this
work we propose one more approach based on a deep architec-
ture, but color of the light source is jointly estimated with the
light direction.

Estimating the direction of the light has also been tackled
from different areas like, computer graphics, computer vision or
augmented reality. Single image light direction estimation can
be divided in two different kinds of approaches. First, those in
which light probes with known reflectance and geometric prop-
erties are used. A Specular sphere is commonly used to rep-
resent light position in different computer graphics applications
[6, 1, 22]. But, random shaped objects to detect light position

were used by Mandl et-al in [17], jointly with a deep learning ap-
proach to get the light position with each of these random shaped
object. Second, we find those works in which no probe is used,
and where multiple image cues such as shading, shape and cast
shadows are the basis to estimate light direction. Some exam-
ples of these works can be found in computer vision literature
[13, 21, 20, 19, 2].

More recently, some deep learning methods have been pro-
posed to estimate scene illumination and have been used for dif-
ferent computer graphics tasks. Gardner et al.[10] introduced a
method to convert low dynamic range (LDR) indoor images to
high dynamic range (HDR) images, first they used a deep net-
work to localize the light source in LDR image environmental
map and then they used another network with these annoted LDR
images to convert them to HDR image. Following a similar ap-
proach, Geoffroy et al. [11] introduced a method to convert out-
door LDR images to HDR images. They trained their network
with a set of panorama images and predicted HDR environmen-
tal maps with sky and sun positions. Later on, Geoffroy et al [9]
extended their previous idea for indoor lighting but replaced the
environmental maps with light geometric and photometric prop-
erties. Sun et al. [24] introduced an encoder-decoder based net-
work to relight a single portrait image, the encoder predicts the
input image environmental map and an embedding for the scene
information, while the decoder builds a new version of the image
scene with the target environmental map and obtains a relighted
portrait. Very recently, Muramann et al. [18] have introduced
the Multi-illuminant dataset of 1000 scenes each one acquired
under 25 different light position conditions, and they used a deep
network to predict a right sided illuminated image from its corre-
sponding left sided illuminated image. In this work we will test
our proposal on this new wild dataset after providing a procedure
to compute the light direction from each sample.

To sum up, we can state that a large range of works have
tackled the problem of estimating color and direction of the scene
light source from different points of views and focusing on spe-
cific applications. In this work we propose an easy end-to-end
approach to jointly characterize the light source of a scene, both
for color and direction. We pursuit to measure the level of accu-
racy we can achieve, in order it can be applied to a wide range of
images, without using probes in the scene and becoming a robust
preliminary stage to be subsequently combined with any task. To
this end, the paper is organized as follows: first we introduce a
new synthetic dataset, secondly we use it to train a deep architec-
ture that estimates light properties from a single image, finally
we show how our proposal performs on three different scenarios,
synthetic, real indoor and natural images.

A synthetic dataset
In order to train our end-to-end network that estimates light
conditions we developed a new image dataset similar to SID
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Figure 1. Image Generation Setup. Camera and light positions are given

in spherical coordinates (r,ϑ ,ϕ).

[23], which was created for intrinsic image decomposition. This
dataset is formed by a large set of images of surreal scenes where
Shapenet objects [3] are enclosed in the center of multi-sided
rooms with highly diverse backgrounds provided by flat textures
on the room walls, resulting in a large range of different light ef-
fects. From now one we will refer to this dataset as SID1, and
we will propose a new one better adapted to our problem, us-
ing the same methodology and software provided by the authors,
which is based on an open source Blender rendering engine to
synthesize images.

Our new dataset will be called SID2 dataset. The main dif-
ference is that it introduces more than one object in each scene,
with the aim of increasing the number of strong light effects and
interactions. Additionally, we also introduce more variability in
the distance from the light source to the scene center. The dataset
is formed by 45,000 synthetic images with the corresponding
ground truth data: direction and color of the light source.

We did several assumptions in building the dataset: (a) ob-
jects are randomly positioned around the scene center but always
close to the room ground floor to have realistic cast shadows;
(b) light source direction goes from scene center to a point onto
an imaginary semi-sphere of a random radius and with random
RGB color; (c) camera is randomly positioned at a random dis-
tance from the center of the scene and always with the focal axis
pointing to the scene center. In Figure 1 we show the diagram of
the synthetic world we defined for the generation of SID2. More
specifically, we took 45,000 3D objects from Shapenet dataset
[3]. Likewise in [23] we did not use textured surfaces, we used a
diffuse bidirectional scattering distribution function (BSDF) with
random color and roughness values for each mesh texture in each
object. This roughness parameter controls how much light is re-
flected back from each object surface. We randomly picked from
1 to 3 objects in each image. They were placed at random loca-
tions within the camera view range. We placed an empty object
in the center of the scene to ensure non-overlapping between the
rest of objects. Light direction was randomly defined in spher-
ical coordinates (rl ,ϑl ,ϕl), being radius, pan and tilt, respec-
tively. We took random values within the ranges of [20m,50m]
[30◦,90◦] and [0◦,360◦] respectively, in steps of 1◦ for pan and 5◦

for tilt. Light intensity and chromaticity was randomly selected,
but chromaticity was constrained to be around the Planckian lo-
cus to simulate natural lighting conditions. Camera position is
also denoted in spherical coordinates as (rc,ϑc,ϕc), where rc
was fixed at 20m and pan, ϑc = 0◦, the tilt range randomly varied
within [10◦,70◦]. In the final ground-truth (GT), light pan and tilt
are provided with reference to the camera position, in order not
to depend on real world positions which are usually not available
in real images. Backgrounds were generated in the same way as
in [23].

Figure 2. Deep Architecture. Inception module from [25]

Our deep architecture
We propose an inception-based encoder-decoder architecture to
predict light parameters. In Figure 2 we give an scheme, where
we can see that our encoder has five modules combining 3 types
of layers: inception, convolution and pooling. The encoder input
is the image that is transformed to a higher dimensional feature
space, from which three decoders convert this embedding to a
common feature space of pan, tilt and color of light source. Pan
and tilt output predictions are given as functions of angle dif-
ferences. We use the functions sin(ϑc −ϑl) and cos(ϑc −ϑl)
to bound the pan output. Similarly, tilt prediction is represented
as difference of angles sin(ϕc −ϕl) and cos(ϕc −ϕl). Finally
color is predicted here as R, G and B values. We used the split
inception module from [25], which replaces n× n convolution
filters with 1× n and n× 1 filter, to achieve faster convergence
with overall less parameter. Our global loss function to estimate
illumination parameters is based on three terms:

Loss(x, ŷ) = α1LPan(x, ŷ)+α2LTilt(x, ŷ)+α3LColor(x, ŷ) (1)

where x is the input image, ŷ is a 7 dimensional vector giving the
estimation of the scene light properties represented by x, αi are
the weights for the different loss terms defined for pan, tilt and
color, and which are respectively given by:

LPan(x, ŷ) = MSE((ŷ1− sin(ϑ x
c −ϑ x

l ))+(ŷ2− cos(ϑ x
c −ϑ x

l )))
LTilt(x, ŷ) = MSE{(ŷ3− sin(ϕx

c −ϕx
l ))+(ŷ4− cos(ϕx

c −ϕx
l )}

LColor(x, ŷ) = arccos((ŷ5 · xRGB)/‖ŷ5‖∗‖(xRGB‖)

LPan and LTilt are computed as the mean square error (MSE) be-
tween the estimations for pan, ŷ1 and ŷ2, and for tilt, ŷ3 and ŷ4,
and a function of the difference between the camera and light po-
sitions for the ground-truth of x. The third loss term, LColor, is the
mean angular error between the estimated RGB values, ŷ5, and
the color of the light for x image provided in the ground-truth.

This network has been trained using Adam optimizer [15],
with initial learning rate 0.0002 which is decreased with factor
of 0.1 on reaching plateau. Weights are initialized using He
Normal[14]. All experiments in next sections were trained using
a batch size of 16. In the following sections we show the results
of several experiments to evaluate the architecture performance
on different datasets and conditions.

Experiment 1: Synthetic dataset
In this first experiment we trained and tested the proposed archi-
tecture on two different datasets: SID1 (single object) and SID2
(multiple objects). The results are shown in Table 1, where we
separately compute different angular errors. Direction error is
given separately in the pan and tilt components, and the global
angular error for direction estimation. We can see that all the es-
timations are improved when the network is trained on a more
complex dataset, like SID2, where multiple objects light interac-
tions provide richer shading cues. However, there is slight im-
provement for color estimation, performance is similar for both



datasets. In Figure 3 we show qualitative results on SID2 dataset.
Images are ordered from smaller (left) to larger (right) direction
estimation error.

Dataset Pan Tilt Direction Color

SID1 14.63 9.86 16.98 1.05
SID2 10.46 9.21 14.22 1.02

Table 1. Estimation Errors (in degrees) for light source direc-
tion and color with the proposed architecture trained on SID1
and SID2.

Intuitively as the light becomes more zenithal, the shadows
shorten and cast shadows present more uncertainty to estimate
light direction. We analysed the performance of the method at
different tilt locations of the light source in the input image, from
the ground (level 1: [30◦, 50◦]) up to the zenithal area (level 3:
[70◦, 90◦]). This effect is confirmed in Table 2, where estimated
errors in direction clearly increase from level 1 to level 3.

Tilt range Pan Tilt Direction Color

Level 1 4.92 5.14 7.57 1.04
Level 2 8.51 5.14 11.97 0.90
Level 3 22.36 18.33 28.33 1.00

Table 2. Estimation Errors (in degrees) for light direction and
color at different tilt levels.

Similarly, we analysed the performance at different pan lev-
els, each level covers 90◦ of pan area. Level 1 is when light
comes from center front, level 2 from right, level 3 from back
and level 4 is when light comes from left side. Tilt angle was
kept between 30◦ and 70◦ to analyze pan error while minimizing
zenithal tilt error effects. Table 3 shows results for this experi-
ment, both direction and color error are consistent in all levels of
pan.

Pan range Pan Tilt Direction Color

Level1 6.87 5.10 9.10 0.98
Level2 6.24 5.12 8.80 0.96
Level3 6.35 5.09 9.46 1.03
Level4 6.01 5.16 9.03 0.97

Table 3. Estimation Errors (in degrees) for light direction and
color at different pan levels.

Experiment 2. Multi-illumination dataset
Once we have evaluated our method in synthetic images, we want
to analyze whether it generalises for real images. We have tested
our method on the Multi-illuminant dataset (MID) [18], that con-
tains 1000 different indoor scenes, all of them containing a dif-
fuse and a specular sphere at random locations. Light source is
mounted above the camera and can be rotated at different prede-
fined pan and tilt angles, creating different light conditions. The
dataset provides the orientation of the light source for each ac-
quired image, but since the light can bounce off the walls, the
direction of the incident light on the scene is not defined by the
light source angles and it needs to be recomputed.

We have defined a procedure to compute the incident light
direction from the specular sphere present in all the scenes,
whose highlights provide enough information to collect our GT
data (tilt and pan angle between light and camera). The color of
the light is obtained from the average color of the diffuse sphere.
To obtain the light direction we used the ideas proposed by [22]
where they assume that the angle of incident light is equal to the
angle of outgoing light at the specular highlight on a spherical
ball. We use a reference image in each scene where light and

camera both are pointed in the same direction towards the center
of the scene. We also assumed that the light is mounted at 10◦

height with respect to scene center. The angles obtained from this
reference images allow to correct the angle displacement due to
the sphere position shifting inside the image on the rest of scene
images.

Dataset (Error) Pan Tilt Direction Color

Masked MID (Mean) 21.38 10.14 22.72 0.63
Masked MID (Median) 13.74 7.64 17.80 0.40
UnMasked MID (Mean) 14.28 6.96 15.44 0.36
UnMasked MID (Median) 8.20 4.83 10.83 0.24

Table 4. Estimation errors in degrees on two versions of MID
dataset (with Masked or UnMasked spheres).

Starting from the network trained on SID2 it was fine tuned
on this dataset under two different conditions: a) keeping the ref-
erence spheres in the image, and b) masking them. Although
specular spheres are not present in real images, the first configu-
ration should provide an upper bound of our method performance
on wild images. Table 4 shows the results on this experiment. As
expected, network performance is much higher when complete
images are used as inputs. We can also observe that results on
color estimation are better than on SID2, mainly due to the sta-
bility of single white light source in the dataset. To analyze the
results removing the influence of the outliers, we also reported
median error on this dataset. Results are as good as the ones ob-
tained only using synthetic images on the upper bound. Qualita-
tive results are provided in Figure 4. Top row depicts the original
image, second row are the spheres generated from the GT infor-
mation, and the third row shows the synthetic spheres generated
with the obtained prediction.

Finally, we perform a last experiment on this dataset by di-
viding the test set in two: (a) images with incident light from
the front, and (b) from the back. Table 5 also shows the errors
computed for these two sets. Both color and direction errors are
higher when the light comes from the back of the scene and a
big area of the image becomes saturated. We want to note here
that the GT we created present a low accuracy for the subset of
images with back light sources.This is due to the inherent un-
certainty derived from what can be inferred from spheres illu-
minated from the back. Therefore, this MID dataset division is
highly recommended to analyse results derived from this GT.

Light position Pan Tilt Direction Color

Front 11.51 6.33 13.09 0.34
Back 32.90 11.21 31.23 0.52

Table 5. Estimation errors in degrees dividing MID dataset in
front and back light.

Experiment 3. Natural images
Previous experiments show the performance of our method on
synthetic and real indoor images. Here, we show a few qualita-
tive results on real outdoor images. In Figure 5 we show some
examples with strong outdoor cast shadows, in order to visually
evaluate the prediction we depict a synthetic pole at the left top
corner. In these examples camera is assumed to be at 45◦ tilt from
ground. Left side four images are from SBU shadow dataset [26]
and the two on the right have been captured with a mobile device.

Conclusions
In this work we have proved the plausibility of using a sim-

ple deep architecture to estimate physical light properties of a
scene from a single image. The proposed approach is based on



(a)

(b)

(c)

Direction 0.57 1.58 4.3 8.55 8.81 30.0
Color 1.27 0.78 1.64 1.8 0.22 0.24

Figure 3. Direction and Color estimation examples on SID2 dataset: (a) Original images, (b) Generated images with estimated light properties, (c) RGB

Image subtraction between (a) and (b). Bottom rows are the corresponding computed errors for direction and color in degrees, ordered from smaller (left) to

larger (right) direction estimation error.

(a)

(b)

(c)

Direction 3.16 5.60 20.12 25.05
Color 0.16 0.21 1.30 0.35

Figure 4. Direction and Color estimation examples on Multi-illumination dataset: (a) Original images, (b) Ground-truth plotted on corresponding spheres, (c)

Estimations provided by our proposed architecture. Bottom rows are computed errors for direction and color in degrees.

Figure 5. Examples of light direction estimation on natural images. Predicted direction is plotted top left in each image.

training a deep regression architecture on a large synthetic and
diversified dataset. We show that the obtained regressor can gen-
eralize to real images and can be used as a preliminary step for
further complex tasks.
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