|
Hans Stadthagen-Gonzalez, M. Carmen Parafita, C. Alejandro Parraga, & Markus F. Damian. (2019). Testing alternative theoretical accounts of code-switching: Insights from comparative judgments of adjective noun order. IJB - International journal of bilingualism: interdisciplinary studies of multilingual behaviour, 23(1), 200–220.
Abstract: Objectives:
Spanish and English contrast in adjective–noun word order: for example, brown dress (English) vs. vestido marrón (‘dress brown’, Spanish). According to the Matrix Language model (MLF) word order in code-switched sentences must be compatible with the word order of the matrix language, but working within the minimalist program (MP), Cantone and MacSwan arrived at the descriptive generalization that the position of the noun phrase relative to the adjective is determined by the adjective’s language. Our aim is to evaluate the predictions derived from these two models regarding adjective–noun order in Spanish–English code-switched sentences.
Methodology:
We contrasted the predictions from both models regarding the acceptability of code-switched sentences with different adjective–noun orders that were compatible with the MP, the MLF, both, or none. Acceptability was assessed in Experiment 1 with a 5-point Likert and in Experiment 2 with a 2-Alternative Forced Choice (2AFC) task.
|
|
|
David Berga, Xavier Otazu, Xose R. Fernandez-Vidal, Victor Leboran, & Xose M. Pardo. (2019). Generating Synthetic Images for Visual Attention Modeling. PER - Perception, 48, 99.
|
|
|
David Berga, & Xavier Otazu. (2019). Computations of inhibition of return mechanisms by modulating V1 dynamics. In 28th Annual Computational Neuroscience Meeting.
Abstract: In this study we present a unifed model of the visual cortex for predicting visual attention using real image scenes. Feedforward mechanisms from RGC and LGN have been functionally modeled using wavelet filters at distinct orientations and scales for each chromatic pathway (Magno-, Parvo-, Konio-cellular) and polarity (ON-/OFF-center), by processing image components in the CIE Lab space. In V1, we process cortical interactions with an excitatory-inhibitory network of fring rate neurons, initially proposed by (Li, 1999), later extended by (Penacchio et al. 2013). Firing rates from model’s output have been used as predictors of neuronal activity to be projected in a map in superior colliculus (with WTA-like computations), determining locations of visual fxations. These locations will be considered as already visited areas for future saccades, therefore we integrated a spatiotemporal function of inhibition of return mechanisms (where LIP/FEF is responsible) to feed to the model with spatial memory for next saccades. Foveation mechanisms have been simulated with a cortical magnifcation function, which distort spatial viewing properties for each fxation. Results show lower prediction errors than with respect no IoR cases (Fig. 1), and it is functionally consistent with human psychophysical measurements. Our model follows a biologically-constrained architecture, previously shown to reproduce visual saliency (Berga & Otazu, 2018), visual discomfort (Penacchio et al. 2016), brightness (Penacchio et al. 2013) and chromatic induction (Cerda & Otazu, 2016).
|
|
|
David Berga, & Xavier Otazu. (2019). Computational modelingof visual attention: What do we know from physiology and psychophysics? In 8th Iberian Conference on Perception.
Abstract: Latest computer vision architectures use a chain of feedforward computations, mainly optimizing artificial neural networks for very specific tasks. Although their impressive performance (i.e. in saliency) using real image datasets, these models do not follow several biological principles of the human visual system (e.g. feedback and horizontal connections in cortex) and are unable to predict several visual tasks simultaneously. In this study we present biologically plausible computations from the early stages of the human visual system (i.e. retina and lateral geniculate nucleus) and lateral connections in V1. Despite the simplicity of these processes and without any type of training or optimization, simulations of firing-rate dynamics of V1 are able to predict bottom-up visual attention at distinct contexts (shown previously as well to predict visual discomfort, brightness and chromatic induction). We also show functional top-down selection mechanisms as feedback inhibition projections (i.e. prefrontal cortex for search/task-based attention and parietal area for inhibition of return). Distinct saliency model predictions are tested with eye tracking datasets in free-viewing and visual search tasks, using real images and synthetically-generated patterns. Results on predicting saliency and scanpaths show that artificial models do not outperform biologically-inspired ones (specifically for datasets that lack of common endogenous biases found in eye tracking experimentation), as well as, do not correctly predict contrast sensitivities in pop-out stimulus patterns. This work remarks the importance of considering biological principles of the visual system for building models that reproduce this (and any other) visual effects.
|
|
|
Domicele Jonauskaite, Nele Dael, C. Alejandro Parraga, Laetitia Chevre, Alejandro Garcia Sanchez, & Christine Mohr. (2018). Stripping #The Dress: The importance of contextual information on inter-individual differences in colour perception. PSYCHO R - Psychological Research, , 1–15.
Abstract: In 2015, a picture of a Dress (henceforth the Dress) triggered popular and scientific interest; some reported seeing the Dress in white and gold (W&G) and others in blue and black (B&B). We aimed to describe the phenomenon and investigate the role of contextualization. Few days after the Dress had appeared on the Internet, we projected it to 240 students on two large screens in the classroom. Participants reported seeing the Dress in B&B (48%), W&G (38%), or blue and brown (B&Br; 7%). Amongst numerous socio-demographic variables, we only observed that W&G viewers were most likely to have always seen the Dress as W&G. In the laboratory, we tested how much contextual information is necessary for the phenomenon to occur. Fifty-seven participants selected colours most precisely matching predominant colours of parts or the full Dress. We presented, in this order, small squares (a), vertical strips (b), and the full Dress (c). We found that (1) B&B, B&Br, and W&G viewers had selected colours differing in lightness and chroma levels for contextualized images only (b, c conditions) and hue for fully contextualized condition only (c) and (2) B&B viewers selected colours most closely matching displayed colours of the Dress. Thus, the Dress phenomenon emerges due to inter-individual differences in subjectively perceived lightness, chroma, and hue, at least when all aspects of the picture need to be integrated. Our results support the previous conclusions that contextual information is key to colour perception; it should be important to understand how this actually happens.
|
|
|
Xim Cerda-Company, Olivier Penacchio, & Xavier Otazu. (2021). Chromatic Induction in Migraine. VISION, 37.
Abstract: The human visual system is not a colorimeter. The perceived colour of a region does not only depend on its colour spectrum, but also on the colour spectra and geometric arrangement of neighbouring regions, a phenomenon called chromatic induction. Chromatic induction is thought to be driven by lateral interactions: the activity of a central neuron is modified by stimuli outside its classical receptive field through excitatory–inhibitory mechanisms. As there is growing evidence of an excitation/inhibition imbalance in migraine, we compared chromatic induction in migraine and control groups. As hypothesised, we found a difference in the strength of induction between the two groups, with stronger induction effects in migraine. On the other hand, given the increased prevalence of visual phenomena in migraine with aura, we also hypothesised that the difference between migraine and control would be more important in migraine with aura than in migraine without aura. Our experiments did not support this hypothesis. Taken together, our results suggest a link between excitation/inhibition imbalance and increased induction effects.
Keywords: migraine; vision; colour; colour perception; chromatic induction; psychophysics
|
|
|
Xavier Otazu, Olivier Penacchio, & Xim Cerda-Company. (2015). Brightness and colour induction through contextual influences in V1. In Scottish Vision Group 2015 SGV2015 (Vol. 12, pp. 1208–2012).
|
|
|
Olivier Penacchio, Xavier Otazu, A. wilkins, & J. Harris. (2015). Uncomfortable images prevent lateral interactions in the cortex from providing a sparse code. In European Conference on Visual Perception ECVP2015.
|
|
|
Xavier Otazu, Olivier Penacchio, & Xim Cerda-Company. (2015). An excitatory-inhibitory firing rate model accounts for brightness induction, colour induction and visual discomfort. In Barcelona Computational, Cognitive and Systems Neuroscience.
|
|
|
David Berga, & Xavier Otazu. (2020). Computations of top-down attention by modulating V1 dynamics. In Computational and Mathematical Models in Vision.
|
|
|
David Berga, & Xavier Otazu. (2020). Modeling Bottom-Up and Top-Down Attention with a Neurodynamic Model of V1. NEUCOM - Neurocomputing, 417, 270–289.
Abstract: Previous studies suggested that lateral interactions of V1 cells are responsible, among other visual effects, of bottom-up visual attention (alternatively named visual salience or saliency). Our objective is to mimic these connections with a neurodynamic network of firing-rate neurons in order to predict visual attention. Early visual subcortical processes (i.e. retinal and thalamic) are functionally simulated. An implementation of the cortical magnification function is included to define the retinotopical projections towards V1, processing neuronal activity for each distinct view during scene observation. Novel computational definitions of top-down inhibition (in terms of inhibition of return, oculomotor and selection mechanisms), are also proposed to predict attention in Free-Viewing and Visual Search tasks. Results show that our model outpeforms other biologically inspired models of saliency prediction while predicting visual saccade sequences with the same model. We also show how temporal and spatial characteristics of saccade amplitude and inhibition of return can improve prediction of saccades, as well as how distinct search strategies (in terms of feature-selective or category-specific inhibition) can predict attention at distinct image contexts.
|
|
|
Olivier Penacchio, Xavier Otazu, Arnold J Wilkings, & Sara M. Haigh. (2023). A mechanistic account of visual discomfort. FN - Frontiers in Neuroscience, 17.
Abstract: Much of the neural machinery of the early visual cortex, from the extraction of local orientations to contextual modulations through lateral interactions, is thought to have developed to provide a sparse encoding of contour in natural scenes, allowing the brain to process efficiently most of the visual scenes we are exposed to. Certain visual stimuli, however, cause visual stress, a set of adverse effects ranging from simple discomfort to migraine attacks, and epileptic seizures in the extreme, all phenomena linked with an excessive metabolic demand. The theory of efficient coding suggests a link between excessive metabolic demand and images that deviate from natural statistics. Yet, the mechanisms linking energy demand and image spatial content in discomfort remain elusive. Here, we used theories of visual coding that link image spatial structure and brain activation to characterize the response to images observers reported as uncomfortable in a biologically based neurodynamic model of the early visual cortex that included excitatory and inhibitory layers to implement contextual influences. We found three clear markers of aversive images: a larger overall activation in the model, a less sparse response, and a more unbalanced distribution of activity across spatial orientations. When the ratio of excitation over inhibition was increased in the model, a phenomenon hypothesised to underlie interindividual differences in susceptibility to visual discomfort, the three markers of discomfort progressively shifted toward values typical of the response to uncomfortable stimuli. Overall, these findings propose a unifying mechanistic explanation for why there are differences between images and between observers, suggesting how visual input and idiosyncratic hyperexcitability give rise to abnormal brain responses that result in visual stress.
|
|
|
Arash Akbarinia, C. Alejandro Parraga, Marta Exposito, Bogdan Raducanu, & Xavier Otazu. (2017). Can biological solutions help computers detect symmetry? In 40th European Conference on Visual Perception.
|
|
|
Bogdan Raducanu, & Fadi Dornaika. (2013). Texture-independent recognition of facial expressions in image snapshots and videos. MVA - Machine Vision and Applications, 24(4), 811–820.
Abstract: This paper addresses the static and dynamic recognition of basic facial expressions. It has two main contributions. First, we introduce a view- and texture-independent scheme that exploits facial action parameters estimated by an appearance-based 3D face tracker. We represent the learned facial actions associated with different facial expressions by time series. Second, we compare this dynamic scheme with a static one based on analyzing individual snapshots and show that the former performs better than the latter. We provide evaluations of performance using three subspace learning techniques: linear discriminant analysis, non-parametric discriminant analysis and support vector machines.
|
|
|
Fadi Dornaika, & Bogdan Raducanu. (2013). Out-of-Sample Embedding for Manifold Learning Applied to Face Recognition. In IEEE International Workshop on Analysis and Modeling of Faces and Gestures (pp. 862–868).
Abstract: Manifold learning techniques are affected by two critical aspects: (i) the design of the adjacency graphs, and (ii) the embedding of new test data---the out-of-sample problem. For the first aspect, the proposed schemes were heuristically driven. For the second aspect, the difficulty resides in finding an accurate mapping that transfers unseen data samples into an existing manifold. Past works addressing these two aspects were heavily parametric in the sense that the optimal performance is only reached for a suitable parameter choice that should be known in advance. In this paper, we demonstrate that sparse coding theory not only serves for automatic graph reconstruction as shown in recent works, but also represents an accurate alternative for out-of-sample embedding. Considering for a case study the Laplacian Eigenmaps, we applied our method to the face recognition problem. To evaluate the effectiveness of the proposed out-of-sample embedding, experiments are conducted using the k-nearest neighbor (KNN) and Kernel Support Vector Machines (KSVM) classifiers on four public face databases. The experimental results show that the proposed model is able to achieve high categorization effectiveness as well as high consistency with non-linear embeddings/manifolds obtained in batch modes.
|
|