toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ruben Ballester; Xavier Arnal Clemente; Carles Casacuberta; Meysam Madadi; Ciprian Corneanu edit   pdf
openurl 
  Title Towards explaining the generalization gap in neural networks using topological data analysis Type Miscellaneous
  Year 2022 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Understanding how neural networks generalize on unseen data is crucial for designing more robust and reliable models. In this paper, we study the generalization gap of neural networks using methods from topological data analysis. For this purpose, we compute homological persistence diagrams of weighted graphs constructed from neuron activation correlations after a training phase, aiming to capture patterns that are linked to the generalization capacity of the network. We compare the usefulness of different numerical summaries from persistence diagrams and show that a combination of some of them can accurately predict and partially explain the generalization gap without the need of a test set. Evaluation on two computer vision recognition tasks (CIFAR10 and SVHN) shows competitive generalization gap prediction when compared against state-of-the-art methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) HUPBA; no menciona Approved no  
  Call Number Admin @ si @ BAC2022 Serial 3821  
Permanent link to this record
 

 
Author Arya Farkhondeh; Cristina Palmero; Simone Scardapane; Sergio Escalera edit   pdf
openurl 
  Title Towards Self-Supervised Gaze Estimation Type Miscellaneous
  Year 2022 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Recent joint embedding-based self-supervised methods have surpassed standard supervised approaches on various image recognition tasks such as image classification. These self-supervised methods aim at maximizing agreement between features extracted from two differently transformed views of the same image, which results in learning an invariant representation with respect to appearance and geometric image transformations. However, the effectiveness of these approaches remains unclear in the context of gaze estimation, a structured regression task that requires equivariance under geometric transformations (e.g., rotations, horizontal flip). In this work, we propose SwAT, an equivariant version of the online clustering-based self-supervised approach SwAV, to learn more informative representations for gaze estimation. We demonstrate that SwAT, with ResNet-50 and supported with uncurated unlabeled face images, outperforms state-of-the-art gaze estimation methods and supervised baselines in various experiments. In particular, we achieve up to 57% and 25% improvements in cross-dataset and within-dataset evaluation tasks on existing benchmarks (ETH-XGaze, Gaze360, and MPIIFaceGaze).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) HUPBA; no menciona Approved no  
  Call Number Admin @ si @ FPS2022 Serial 3822  
Permanent link to this record
 

 
Author Javier Selva; Anders S. Johansen; Sergio Escalera; Kamal Nasrollahi; Thomas B. Moeslund; Albert Clapes edit  doi
openurl 
  Title Video transformers: A survey Type Journal Article
  Year 2023 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 45 Issue 11 Pages 12922-12943  
  Keywords Artificial Intelligence; Computer Vision; Self-Attention; Transformers; Video Representations  
  Abstract Transformer models have shown great success handling long-range interactions, making them a promising tool for modeling video. However, they lack inductive biases and scale quadratically with input length. These limitations are further exacerbated when dealing with the high dimensionality introduced by the temporal dimension. While there are surveys analyzing the advances of Transformers for vision, none focus on an in-depth analysis of video-specific designs. In this survey, we analyze the main contributions and trends of works leveraging Transformers to model video. Specifically, we delve into how videos are handled at the input level first. Then, we study the architectural changes made to deal with video more efficiently, reduce redundancy, re-introduce useful inductive biases, and capture long-term temporal dynamics. In addition, we provide an overview of different training regimes and explore effective self-supervised learning strategies for video. Finally, we conduct a performance comparison on the most common benchmark for Video Transformers (i.e., action classification), finding them to outperform 3D ConvNets even with less computational complexity.  
  Address 1 Nov. 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) HUPBA; no menciona Approved no  
  Call Number Admin @ si @ SJE2023 Serial 3823  
Permanent link to this record
 

 
Author Razieh Rastgoo; Kourosh Kiani; Sergio Escalera edit   pdf
openurl 
  Title Word separation in continuous sign language using isolated signs and post-processing Type Miscellaneous
  Year 2022 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Continuous Sign Language Recognition (CSLR) is a long challenging task in Computer Vision due to the difficulties in detecting the explicit boundaries between the words in a sign sentence. To deal with this challenge, we propose a two-stage model. In the first stage, the predictor model, which includes a combination of CNN, SVD, and LSTM, is trained with the isolated signs. In the second stage, we apply a post-processing algorithm to the Softmax outputs obtained from the first part of the model in order to separate the isolated signs in the continuous signs. Due to the lack of a large dataset, including both the sign sequences and the corresponding isolated signs, two public datasets in Isolated Sign Language Recognition (ISLR), RKS-PERSIANSIGN and ASLVID, are used for evaluation. Results of the continuous sign videos confirm the efficiency of the proposed model to deal with isolated sign boundaries detection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) HUPBA; no menciona Approved no  
  Call Number Admin @ si @ RKE2022b Serial 3824  
Permanent link to this record
 

 
Author Razieh Rastgoo; Kourosh Kiani; Sergio Escalera edit   pdf
openurl 
  Title A Non-Anatomical Graph Structure for isolated hand gesture separation in continuous gesture sequences Type Miscellaneous
  Year 2022 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Continuous Hand Gesture Recognition (CHGR) has been extensively studied by researchers in the last few decades. Recently, one model has been presented to deal with the challenge of the boundary detection of isolated gestures in a continuous gesture video [17]. To enhance the model performance and also replace the handcrafted feature extractor in the presented model in [17], we propose a GCN model and combine it with the stacked Bi-LSTM and Attention modules to push the temporal information in the video stream. Considering the breakthroughs of GCN models for skeleton modality, we propose a two-layer GCN model to empower the 3D hand skeleton features. Finally, the class probabilities of each isolated gesture are fed to the post-processing module, borrowed from [17]. Furthermore, we replace the anatomical graph structure with some non-anatomical graph structures. Due to the lack of a large dataset, including both the continuous gesture sequences and the corresponding isolated gestures, three public datasets in Dynamic Hand Gesture Recognition (DHGR), RKS-PERSIANSIGN, and ASLVID, are used for evaluation. Experimental results show the superiority of the proposed model in dealing with isolated gesture boundaries detection in continuous gesture sequences  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) HuPBA; no menciona Approved no  
  Call Number Admin @ si @ RKE2022d Serial 3828  
Permanent link to this record
 

 
Author German Barquero; Sergio Escalera; Cristina Palmero edit   pdf
url  openurl
  Title BeLFusion: Latent Diffusion for Behavior-Driven Human Motion Prediction Type Conference Article
  Year 2023 Publication IEEE/CVF International Conference on Computer Vision (ICCV) Workshops Abbreviated Journal  
  Volume Issue Pages 2317-2327  
  Keywords  
  Abstract Stochastic human motion prediction (HMP) has generally been tackled with generative adversarial networks and variational autoencoders. Most prior works aim at predicting highly diverse movements in terms of the skeleton joints’ dispersion. This has led to methods predicting fast and motion-divergent movements, which are often unrealistic and incoherent with past motion. Such methods also neglect contexts that need to anticipate diverse low-range behaviors, or actions, with subtle joint displacements. To address these issues, we present BeLFusion, a model that, for the first time, leverages latent diffusion models in HMP to sample from a latent space where behavior is disentangled from pose and motion. As a result, diversity is encouraged from a behavioral perspective. Thanks to our behavior
coupler’s ability to transfer sampled behavior to ongoing motion, BeLFusion’s predictions display a variety of behaviors that are significantly more realistic than the state of the art. To support it, we introduce two metrics, the Area of
the Cumulative Motion Distribution, and the Average Pairwise Distance Error, which are correlated to our definition of realism according to a qualitative study with 126 participants. Finally, we prove BeLFusion’s generalization power in a new cross-dataset scenario for stochastic HMP.
 
  Address 2-6 October 2023. Paris (France)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCV  
  Notes (up) HUPBA; no menciona Approved no  
  Call Number Admin @ si @ BEP2023 Serial 3829  
Permanent link to this record
 

 
Author Hugo Jair Escalante; Isabelle Guyon; Sergio Escalera; Julio C. S. Jacques Junior; Xavier Baro; Evelyne Viegas; Yagmur Gucluturk; Umut Guclu; Marcel A. J. van Gerven; Rob van Lier; Meysam Madadi; Stephane Ayache edit   pdf
doi  openurl
  Title Design of an Explainable Machine Learning Challenge for Video Interviews Type Conference Article
  Year 2017 Publication International Joint Conference on Neural Networks Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This paper reviews and discusses research advances on “explainable machine learning” in computer vision. We focus on a particular area of the “Looking at People” (LAP) thematic domain: first impressions and personality analysis. Our aim is to make the computational intelligence and computer vision communities aware of the importance of developing explanatory mechanisms for computer-assisted decision making applications, such as automating recruitment. Judgments based on personality traits are being made routinely by human resource departments to evaluate the candidates' capacity of social insertion and their potential of career growth. However, inferring personality traits and, in general, the process by which we humans form a first impression of people, is highly subjective and may be biased. Previous studies have demonstrated that learning machines can learn to mimic human decisions. In this paper, we go one step further and formulate the problem of explaining the decisions of the models as a means of identifying what visual aspects are important, understanding how they relate to decisions suggested, and possibly gaining insight into undesirable negative biases. We design a new challenge on explainability of learning machines for first impressions analysis. We describe the setting, scenario, evaluation metrics and preliminary outcomes of the competition. To the best of our knowledge this is the first effort in terms of challenges for explainability in computer vision. In addition our challenge design comprises several other quantitative and qualitative elements of novelty, including a “coopetition” setting, which combines competition and collaboration.  
  Address Anchorage; Alaska; USA; May 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IJCNN  
  Notes (up) HUPBA; no proj Approved no  
  Call Number Admin @ si @ EGE2017 Serial 2922  
Permanent link to this record
 

 
Author Maryam Asadi-Aghbolaghi; Albert Clapes; Marco Bellantonio; Hugo Jair Escalante; Victor Ponce; Xavier Baro; Isabelle Guyon; Shohreh Kasaei; Sergio Escalera edit  openurl
  Title Deep Learning for Action and Gesture Recognition in Image Sequences: A Survey Type Book Chapter
  Year 2017 Publication Gesture Recognition Abbreviated Journal  
  Volume Issue Pages 539-578  
  Keywords Action recognition; Gesture recognition; Deep learning architectures; Fusion strategies  
  Abstract Interest in automatic action and gesture recognition has grown considerably in the last few years. This is due in part to the large number of application domains for this type of technology. As in many other computer vision areas, deep learning based methods have quickly become a reference methodology for obtaining state-of-the-art performance in both tasks. This chapter is a survey of current deep learning based methodologies for action and gesture recognition in sequences of images. The survey reviews both fundamental and cutting edge methodologies reported in the last few years. We introduce a taxonomy that summarizes important aspects of deep learning for approaching both tasks. Details of the proposed architectures, fusion strategies, main datasets, and competitions are reviewed. Also, we summarize and discuss the main works proposed so far with particular interest on how they treat the temporal dimension of data, their highlighting features, and opportunities and challenges for future research. To the best of our knowledge this is the first survey in the topic. We foresee this survey will become a reference in this ever dynamic field of research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) HUPBA; no proj Approved no  
  Call Number Admin @ si @ ACB2017a Serial 2981  
Permanent link to this record
 

 
Author Maryam Asadi-Aghbolaghi; Albert Clapes; Marco Bellantonio; Hugo Jair Escalante; Victor Ponce; Xavier Baro; Isabelle Guyon; Shohreh Kasaei; Sergio Escalera edit   pdf
openurl 
  Title A survey on deep learning based approaches for action and gesture recognition in image sequences Type Conference Article
  Year 2017 Publication 12th IEEE International Conference on Automatic Face and Gesture Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The interest in action and gesture recognition has grown considerably in the last years. In this paper, we present a survey on current deep learning methodologies for action and gesture recognition in image sequences. We introduce a taxonomy that summarizes important aspects of deep learning
for approaching both tasks. We review the details of the proposed architectures, fusion strategies, main datasets, and competitions.
We summarize and discuss the main works proposed so far with particular interest on how they treat the temporal dimension of data, discussing their main features and identify opportunities and challenges for future research.
 
  Address Washington; USA; May 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FG  
  Notes (up) HUPBA; no proj Approved no  
  Call Number Admin @ si @ ACB2017b Serial 2982  
Permanent link to this record
 

 
Author Sergio Escalera; Vassilis Athitsos; Isabelle Guyon edit  openurl
  Title Challenges in Multi-modal Gesture Recognition Type Book Chapter
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 1-60  
  Keywords Gesture recognition; Time series analysis; Multimodal data analysis; Computer vision; Pattern recognition; Wearable sensors; Infrared cameras; Kinect TMTM  
  Abstract This paper surveys the state of the art on multimodal gesture recognition and introduces the JMLR special topic on gesture recognition 2011–2015. We began right at the start of the Kinect TMTM revolution when inexpensive infrared cameras providing image depth recordings became available. We published papers using this technology and other more conventional methods, including regular video cameras, to record data, thus providing a good overview of uses of machine learning and computer vision using multimodal data in this area of application. Notably, we organized a series of challenges and made available several datasets we recorded for that purpose, including tens of thousands of videos, which are available to conduct further research. We also overview recent state of the art works on gesture recognition based on a proposed taxonomy for gesture recognition, discussing challenges and future lines of research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) HuPBA; no proj Approved no  
  Call Number Admin @ si @ EAG2017 Serial 3008  
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera; Huamin Ren; Thomas B. Moeslund; Elham Etemad edit  url
openurl 
  Title Locality Regularized Group Sparse Coding for Action Recognition Type Journal Article
  Year 2017 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
  Volume 158 Issue Pages 106-114  
  Keywords Bag of words; Feature encoding; Locality constrained coding; Group sparse coding; Alternating direction method of multipliers; Action recognition  
  Abstract Bag of visual words (BoVW) models are widely utilized in image/ video representation and recognition. The cornerstone of these models is the encoding stage, in which local features are decomposed over a codebook in order to obtain a representation of features. In this paper, we propose a new encoding algorithm by jointly encoding the set of local descriptors of each sample and considering the locality structure of descriptors. The proposed method takes advantages of locality coding such as its stability and robustness to noise in descriptors, as well as the strengths of the group coding strategy by taking into account the potential relation among descriptors of a sample. To efficiently implement our proposed method, we consider the Alternating Direction Method of Multipliers (ADMM) framework, which results in quadratic complexity in the problem size. The method is employed for a challenging classification problem: action recognition by depth cameras. Experimental results demonstrate the outperformance of our methodology compared to the state-of-the-art on the considered datasets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) HuPBA; no proj Approved no  
  Call Number Admin @ si @ BGE2017 Serial 3014  
Permanent link to this record
 

 
Author Huamin Ren; Nattiya Kanhabua; Andreas Mogelmose; Weifeng Liu; Kaustubh Kulkarni; Sergio Escalera; Xavier Baro; Thomas B. Moeslund edit  url
doi  openurl
  Title Back-dropout Transfer Learning for Action Recognition Type Journal Article
  Year 2018 Publication IET Computer Vision Abbreviated Journal IETCV  
  Volume 12 Issue 4 Pages 484-491  
  Keywords Learning (artificial intelligence); Pattern Recognition  
  Abstract Transfer learning aims at adapting a model learned from source dataset to target dataset. It is a beneficial approach especially when annotating on the target dataset is expensive or infeasible. Transfer learning has demonstrated its powerful learning capabilities in various vision tasks. Despite transfer learning being a promising approach, it is still an open question how to adapt the model learned from the source dataset to the target dataset. One big challenge is to prevent the impact of category bias on classification performance. Dataset bias exists when two images from the same category, but from different datasets, are not classified as the same. To address this problem, a transfer learning algorithm has been proposed, called negative back-dropout transfer learning (NB-TL), which utilizes images that have been misclassified and further performs back-dropout strategy on them to penalize errors. Experimental results demonstrate the effectiveness of the proposed algorithm. In particular, the authors evaluate the performance of the proposed NB-TL algorithm on UCF 101 action recognition dataset, achieving 88.9% recognition rate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) HUPBA; no proj Approved no  
  Call Number Admin @ si @ RKM2018 Serial 3071  
Permanent link to this record
 

 
Author Mark Philip Philipsen; Jacob Velling Dueholm; Anders Jorgensen; Sergio Escalera; Thomas B. Moeslund edit  doi
openurl 
  Title Organ Segmentation in Poultry Viscera Using RGB-D Type Journal Article
  Year 2018 Publication Sensors Abbreviated Journal SENS  
  Volume 18 Issue 1 Pages 117  
  Keywords semantic segmentation; RGB-D; random forest; conditional random field; 2D; 3D; CNN  
  Abstract We present a pattern recognition framework for semantic segmentation of visual structures, that is, multi-class labelling at pixel level, and apply it to the task of segmenting organs in the eviscerated viscera from slaughtered poultry in RGB-D images. This is a step towards replacing the current strenuous manual inspection at poultry processing plants. Features are extracted from feature maps such as activation maps from a convolutional neural network (CNN). A random forest classifier assigns class probabilities, which are further refined by utilizing context in a conditional random field. The presented method is compatible with both 2D and 3D features, which allows us to explore the value of adding 3D and CNN-derived features. The dataset consists of 604 RGB-D images showing 151 unique sets of eviscerated viscera from four different perspectives. A mean Jaccard index of 78.11% is achieved across the four classes of organs by using features derived from 2D, 3D and a CNN, compared to 74.28% using only basic 2D image features.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) HUPBA; no proj Approved no  
  Call Number Admin @ si @ PVJ2018 Serial 3072  
Permanent link to this record
 

 
Author Shanxin Yuan; Guillermo Garcia-Hernando; Bjorn Stenger; Gyeongsik Moon; Ju Yong Chang; Kyoung Mu Lee; Pavlo Molchanov; Jan Kautz; Sina Honari; Liuhao Ge; Junsong Yuan; Xinghao Chen; Guijin Wang; Fan Yang; Kai Akiyama; Yang Wu; Qingfu Wan; Meysam Madadi; Sergio Escalera; Shile Li; Dongheui Lee; Iason Oikonomidis; Antonis Argyros; Tae-Kyun Kim edit   pdf
doi  openurl
  Title Depth-Based 3D Hand Pose Estimation: From Current Achievements to Future Goals Type Conference Article
  Year 2018 Publication 31st IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 2636 - 2645  
  Keywords Three-dimensional displays; Task analysis; Pose estimation; Two dimensional displays; Joints; Training; Solid modeling  
  Abstract In this paper, we strive to answer two questions: What is the current state of 3D hand pose estimation from depth images? And, what are the next challenges that need to be tackled? Following the successful Hands In the Million Challenge (HIM2017), we investigate the top 10 state-of-the-art methods on three tasks: single frame 3D pose estimation, 3D hand tracking, and hand pose estimation during object interaction. We analyze the performance of different CNN structures with regard to hand shape, joint visibility, view point and articulation distributions. Our findings include: (1) isolated 3D hand pose estimation achieves low mean errors (10 mm) in the view point range of [70, 120] degrees, but it is far from being solved for extreme view points; (2) 3D volumetric representations outperform 2D CNNs, better capturing the spatial structure of the depth data; (3) Discriminative methods still generalize poorly to unseen hand shapes; (4) While joint occlusions pose a challenge for most methods, explicit modeling of structure constraints can significantly narrow the gap between errors on visible and occluded joints.  
  Address Salt Lake City; USA; June 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes (up) HUPBA; no proj Approved no  
  Call Number Admin @ si @ YGS2018 Serial 3115  
Permanent link to this record
 

 
Author Mohammad A. Haque; Ruben B. Bautista; Kamal Nasrollahi; Sergio Escalera; Christian B. Laursen; Ramin Irani; Ole K. Andersen; Erika G. Spaich; Kaustubh Kulkarni; Thomas B. Moeslund; Marco Bellantonio; Golamreza Anbarjafari; Fatemeh Noroozi edit   pdf
doi  openurl
  Title Deep Multimodal Pain Recognition: A Database and Comparision of Spatio-Temporal Visual Modalities, Faces and Gestures Type Conference Article
  Year 2018 Publication 13th IEEE Conference on Automatic Face and Gesture Recognition Abbreviated Journal  
  Volume Issue Pages 250 - 257  
  Keywords  
  Abstract Pain is a symptom of many disorders associated with actual or potential tissue damage in human body. Managing pain is not only a duty but also highly cost prone. The most primitive state of pain management is the assessment of pain. Traditionally it was accomplished by self-report or visual inspection by experts. However, automatic pain assessment systems from facial videos are also rapidly evolving due to the need of managing pain in a robust and cost effective way. Among different challenges of automatic pain assessment from facial video data two issues are increasingly prevalent: first, exploiting both spatial and temporal information of the face to assess pain level, and second, incorporating multiple visual modalities to capture complementary face information related to pain. Most works in the literature focus on merely exploiting spatial information on chromatic (RGB) video data on shallow learning scenarios. However, employing deep learning techniques for spatio-temporal analysis considering Depth (D) and Thermal (T) along with RGB has high potential in this area. In this paper, we present the first state-of-the-art publicly available database, 'Multimodal Intensity Pain (MIntPAIN)' database, for RGBDT pain level recognition in sequences. We provide a first baseline results including 5 pain levels recognition by analyzing independent visual modalities and their fusion with CNN and LSTM models. From the experimental evaluation we observe that fusion of modalities helps to enhance recognition performance of pain levels in comparison to isolated ones. In particular, the combination of RGB, D, and T in an early fusion fashion achieved the best recognition rate.  
  Address Xian; China; May 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FG  
  Notes (up) HUPBA; no proj Approved no  
  Call Number Admin @ si @ HBN2018 Serial 3117  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: