Maryam Asadi-Aghbolaghi^{1,2,3}, Albert Clapés^{2,3}, Marco Bellantonio⁴, Hugo Jair Escalante⁵, Victor Ponce-López^{2,3}, Xavier Baró^{3,6}, Isabelle Guyon⁷, Shorheh Kasaei¹, Sergio Escalera^{2,3}

¹Dept. of Computer Engineering, Sharif University of Technology, Tehran, Iran |²Dept. of Applied Mathematics and Analysis, University of Barcelona, Barcelona, Spain | ³Comuter Vision Center, Autonomous University of Barcelona, Bellaterra (Barcelona), Spain | ⁴School of Informatics, Polytechnic University of Barcelona, Barcelona, Spain | ⁵Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla, México | ⁶EIMT, Open University of Catalonia, Barcelona, Spain | ⁷Université Paris-Saclay, Paris, France

A survey on deep learning based approaches for action and gesture recognition in image sequences

Abstract

In this paper, we present:

- A survey on current deep learning methodologies for action and gesture recognition in image sequences,
- □ A taxonomy that summarizes important aspects of deep learning for approaching both tasks with particular interest on how they treat the temporal dimension of data,
- □ The details of the proposed architectures, fusion strategies, main datasets, and competitions,

Motivation

The interest in **action and gesture recognition** has grown considerably in the last years. Recent deep learning outperformed "non-deep" state-of-the-art methods. However, some questions remain opened:

- □ How to deal with temporal information. We investigated works that go beyond averaging class score predictions on individual frames for video prediction.
- □ How to be train deep models with small datasets.
- □ Whether deep-learning approaches rely only on deep models or in combination with hand-crafted features.
- □ Which are the most successful approaches to anticipate future trends and research directions.

Datasets and challenges

Action datasets

Year	Dataset	Problem	Body Parts	Modality	No.classes	Performance
2008	UCF Sports	AC, STL	F	RGB	10	95.80%,
2008	OCF Sports	AC, SIL	Г	NUD	10	0.789@0.5 mAP
2009	Hollywood 2	AC	F, U, L	RGB	12	78.50 mAP
2010	Highfive	AC, STL	F,U	RGB	4	69.40 mAP [7], 0.466 IoU
2010	Olympic Sports	AC	F	RGB	16	96.60% Acc [6]
2011	HMDB51	AC	F, U, L	RGB	51	73.60% Acc
2012	MPII Cooking	AC, TL	F, U	RGB	65	72.40 mAP, -
2012	UCF101	AC,TL	F, U, L	PCB	101	94.20% Acc [13],
2012	001/101	AC,IL	I, U, L	KOD	101	46.77@0.2 mAP (split 1)
2014	Sports 1-Million	AC	F, U, L	RGB	487	73.10% Acc
2014	THUMOS-14	AC, TL	F, U, L	PGB	101 20 *	71.60 mAP [8],
2014	11101005-14	AC, IL	1, 0, L	RGB 65 RGB 101 RGB 487	0.190@0.5 mAP [11]	
2015	THUMOS-15	AC, TL	F, U, L	RGB	101, 20 *	80.80 mAP [6],
2015	11101005-15	AC, IL	1, 0, L	ROD	101, 20	0.183@0.5 mAP
2015	ActivityNet	AC, TL	F, U, L	RGB	200	93.23 mAP,
2015	AcuvityNet	AC, IL	1, 0, L	KOD .	200	0.594@0.5 mAP

Gesture datasets

Year	Dataset	Problem	Body Parts	Modality	No.classes	Performance
2011	ChaLearn Gesture	GC	F, U	RGB, D	15	-
2012	MSR-Gesture3D	GC	F, H	RGB, D	12	98.50% Acc
2014	ChaLearn (Track 3)	GC, TL	U	RGB, D, S	20	98.20 Acc, 0.870 IoU
2015	VIVA Hand Gesture	GC	Н	RGB	19	77.50% Acc
2016	ChaLearn conGD	TL	U	RGB, D	249	0.315 IoU
2010	ChaLearn isoGD	GC		KOD, D	249	67.19% Acc

Challenges

Challenge	Year	Dataset	Task	Event
0	2012	CGD	G	-
	2013	Montalbano	G	-
ChaLearn	2014	HuPBA 8K+	A	ECCV
Chaleann		Montalbano	G	
	2015	HuPBA 8K+	Α	CVPR
	2016	isoGD, conGD	G	ICPR
HAL	2012	LIRIS	Α	ICPR
Opportunity	2011	Opportunity	Α	-
ROSE	2016	NTU RGB+D	Α	ACCV
	2013	UCF101	Α	ICCV
THUMOS	2014	THUMOS-14	Α	ECCV
	2015	THUMOS-15	Α	CVPR
VIVA	2015	VIVA	G	CVPR
VIRAT	2012	VIRAT DB	A	CVPR

PPORTUNITY

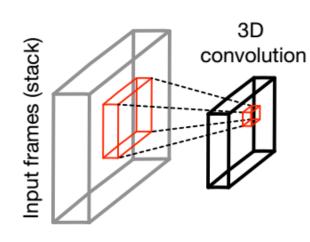
ne Activity Recognition Challenge

Taxonomy

Architectures

We categorize the different CNN-based approaches based on how they handle the temporal dimension of videos:

- **3D** convolutions which are able to learn local spatiotemporal features by extending the connectivity of convolutional neurons across multiple adjacent frames [1].
- □ Motion hand-crafted features (e.g. dense optical flow frames) being directly input a second cue along with the color one [2,4,7].
- □ Sequential models (e.g. CNN+RNN) that model the evolution of responses got from a frame-level classifier [12].



3D convolutions

Fusion strategies

The goal is to exploit information complementariness and redundancy for improving the recognition performance, either by using:

□ Several frames, fixed-length clips, or spatial locations sampled across the entire video. □ Multiple data cues (color, motion, depth, etc).

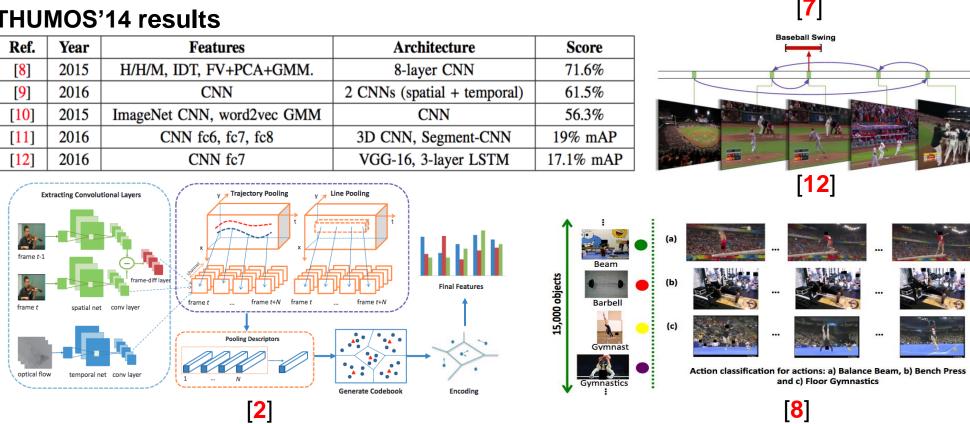
channels [1]. □ Late fusion: combining class predictions [4]. □ Slow fusion: progressively fusing by convolution and pooling.

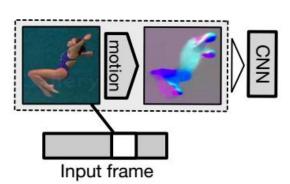
State-of-the-art method results

LICE_101 regults

Ref.	Year	Features	Architecture	Score
[2]	2015	CNN, IDT	2 CNN + iDT pooling	93.78%
[3]	2016	Opt. Flow, 3D CNN, IDT	LTC-CNN	92.7%
[4]	2016	conv5, 3D pool	VGG-16, VGG-M, 3D CNN	92.5%
[<mark>5</mark>]	2016	CNN	Siamese VGG-16	92.4%
[<mark>6</mark>]	2016	CNN fc7	2 CNNs (spatial + temporal)	92.2%
[7]	2015	CNN, Hog/Hof/Mbh	2-stream CNN	91.5%

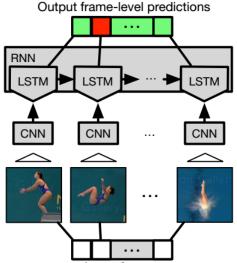
Featur	Year	Ref.
H/H/M, IDT, FV+	2015	[<mark>8</mark>]
CNN	2016	[<mark>9</mark>]
ImageNet CNN, wo	2015	[10]
CNN fc6, fc	2016	[11]
CNN f	2016	[12]





Motion-based hand-

crafted features



Sequential models

Input frame

Slow fusion

 \sim

 \sim

- The most **common strategies** can be categorized into: **Early fusion:** stacking the information as different input

Discussion

On temporal modeling:

- score predictions (not covered in this version of the paper).

- connectivity in the network's input (i.e., larger clips) [3].

On training with **small datasets**:

- appearance [18].
- weights of the appearance (namely spatial) stream [18].
- □ 3D CNNs can be initialized using 2D weights [14].
- combining several soft-max layers' outputs) [18].

On the exploitation of **hand-crafted features** in hybrid approaches:

- the deep model [7].
- [17].

On future trends and research directions:

- □ Towards more complex end-to-end trained models [12].
- □ Early detection [15].

References

[1] Ji, Shuiwang, et al. "3D convolutional neural networks for human action recognition." TPAMI 35.1 (2013): 221-231. [2] Zhao, Shichao, et al. "Pooling the convolutional layers in deep convnets for action recognition." arXiv preprint arXiv:1511.02126 (2015).

[3] Varol, Gül, Ivan Laptev, and Cordelia Schmid. "Long-term temporal convolutions for action recognition." arXiv preprint arXiv:1604.04494 (2016)

[4] Feichtenhofer, Christoph, Axel Pinz, and Andrew Zisserman. "Convolutional two-stream network fusion for video action recognition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. [5] Wang, Xiaolong, Ali Farhadi, and Abhinav Gupta. "Actions~transformations." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. [6] Li, Yingwei, et al. "Vlad3: Encoding dynamics of deep features for action recognition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. [7] Wang, Limin, Yu Qiao, and Xiaoou Tang. "Action recognition with trajectory-pooled deep-convolutional descriptors." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. [8] Jain, Mihir, Jan C. van Gemert, and Cees GM Snoek. "What do 15,000 object categories tell us about classifying and localizing actions?." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. [9] Zhang, Bowen, et al. "Real-time action recognition with enhanced motion vector CNNs." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. [10] Jain, Mihir, et al. "Objects2action: Classifying and localizing actions without any video example." Proceedings of the IEEE International Conference on Computer Vision. 2015. [11] Shou, Zheng, Dongang Wang, and Shih-Fu Chang. "Temporal action localization in untrimmed videos via multistage cnns." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. [12] Yeung, Serena, et al. "End-to-end learning of action detection from frame glimpses in videos." *Proceedings of the* IEEE Conference on Computer Vision and Pattern Recognition. 2016. [13] Wang, Limin, et al. "Temporal segment networks: towards good practices for deep action recognition." European Conference on Computer Vision. Springer International Publishing, 2016. [14] Mansimov, Elman, Nitish Srivastava, and Ruslan Salakhutdinov. "Initialization strategies of spatio-temporal convolutional neural networks." arXiv preprint arXiv:1503.07274 (2015). [15] Molchanov, Pavlo, et al. "Online detection and classification of dynamic hand gestures with recurrent 3d convolutional neural network." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

2016.

[16] Cao, Congqi, et al. "Action Recognition with Joints-Pooled 3D Deep Convolutional Descriptors." [17] M. Ibrahim, et al. A hierarchical deep temporal model for group activity recognition. arXiv preprint arXiv:1511.06040, 2015.

[18] Simonyan, Karen, and Andrew Zisserman. "Two-stream convolutional networks for action recognition in videos." Advances in neural information processing systems. 2014.

□ The most input *naive* way to deal with temporal dimension is to average frame-level class

□ 3D convolutions can model discriminative – more local – spatiotemporal features [1].

□ Sequential models (e.g. LSTM) better handle longer-range temporal relations.

□ It has proven useful to sacrifice spatial resolution in favor of extending the temporal

□ Motion (e.g. optical flow) and skeleton features are easier to model (and not *overfit*) than

□ When using 2D CNNs, image datasets (e.g. ImageNet) are often used to pre-train

□ Multi-task learning has proven useful to jointly train on several datasets (loss function

□ Video class predictions from hand-crafted approaches are combined with the ones from

□ In particular, iDTs can be used to pool deep features from CNN convolutional maps [2,7]. □ Taking advantage of human body spatial constraints [16] or interaction among subjects

□ Efficient recognition and detection of actions in more complex longer sequences [11,12].