toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cristhian A. Aguilera-Carrasco; Luis Felipe Gonzalez-Böhme; Francisco Valdes; Francisco Javier Quitral Zapata; Bogdan Raducanu edit  doi
openurl 
  Title A Hand-Drawn Language for Human–Robot Collaboration in Wood Stereotomy Type Journal Article
  Year 2023 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 11 Issue Pages 100975 - 100985  
  Keywords  
  Abstract This study introduces a novel, hand-drawn language designed to foster human-robot collaboration in wood stereotomy, central to carpentry and joinery professions. Based on skilled carpenters’ line and symbol etchings on timber, this language signifies the location, geometry of woodworking joints, and timber placement within a framework. A proof-of-concept prototype has been developed, integrating object detectors, keypoint regression, and traditional computer vision techniques to interpret this language and enable an extensive repertoire of actions. Empirical data attests to the language’s efficacy, with the successful identification of a specific set of symbols on various wood species’ sawn surfaces, achieving a mean average precision (mAP) exceeding 90%. Concurrently, the system can accurately pinpoint critical positions that facilitate robotic comprehension of carpenter-indicated woodworking joint geometry. The positioning error, approximately 3 pixels, meets industry standards.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ AGV2023 Serial 3969  
Permanent link to this record
 

 
Author Roger Max Calle Quispe; Maya Aghaei Gavari; Eduardo Aguilar Torres edit  url
openurl 
  Title Towards real-time accurate safety helmets detection through a deep learning-based method Type Journal
  Year 2023 Publication Ingeniare. Revista chilena de ingenieria Abbreviated Journal  
  Volume 31 Issue 12 Pages  
  Keywords  
  Abstract Occupational safety is a fundamental activity in industries and revolves around the management of the necessary controls that must be present to mitigate occupational risks. These controls include verifying the use of Personal Protection Equipment (PPE). Within PPE, safety helmets are vital to reducing severe or fatal consequences caused by head injuries. This problem has been addressed recently by various research based on deep learning to detect the usage of safety helmets by the present people in the industrial field.

These works have achieved promising results for safety helmet detection using object detection methods from the YOLO family. In this work, we propose to analyze the performance of Scaled-YOLOv4, a novel model of the YOLO family that has yet to be previously studied for this problem. The performance of the Scaled-YOLOv4 is evaluated on two public databases, carefully selected among the previously proposed datasets for the occupational safety framework. We demonstrate the superiority of Scaled-YOLOv4 in terms of mAP and Fl-score concerning the previous works for both databases. Further, we summarize the currently available datasets for safety helmet detection purposes and discuss their suitability.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ CAA2023 Serial 3846  
Permanent link to this record
 

 
Author G. Gasbarri; Matias Bilkis; E. Roda Salichs; J. Calsamiglia edit   pdf
url  openurl
  Title Sequential hypothesis testing for continuously-monitored quantum systems Type Journal Article
  Year 2024 Publication Quantum Abbreviated Journal  
  Volume 8 Issue 1289 Pages  
  Keywords  
  Abstract We consider a quantum system that is being continuously monitored, giving rise to a measurement signal. From such a stream of data, information needs to be inferred about the underlying system's dynamics. Here we focus on hypothesis testing problems and put forward the usage of sequential strategies where the signal is analyzed in real time, allowing the experiment to be concluded as soon as the underlying hypothesis can be identified with a certified prescribed success probability. We analyze the performance of sequential tests by studying the stopping-time behavior, showing a considerable advantage over currently-used strategies based on a fixed predetermined measurement time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) Medium  
  Area Expedition Conference  
  Notes xxxx Approved no  
  Call Number Admin @ si @ GBR2024 Serial 3847  
Permanent link to this record
 

 
Author Mohamed Ali Souibgui; Sanket Biswas; Andres Mafla; Ali Furkan Biten; Alicia Fornes; Yousri Kessentini; Josep Llados; Lluis Gomez; Dimosthenis Karatzas edit  url
openurl 
  Title Text-DIAE: a self-supervised degradation invariant autoencoder for text recognition and document enhancement Type Conference Article
  Year 2023 Publication Proceedings of the 37th AAAI Conference on Artificial Intelligence Abbreviated Journal  
  Volume 37 Issue 2 Pages  
  Keywords Representation Learning for Vision; CV Applications; CV Language and Vision; ML Unsupervised; Self-Supervised Learning  
  Abstract In this paper, we propose a Text-Degradation Invariant Auto Encoder (Text-DIAE), a self-supervised model designed to tackle two tasks, text recognition (handwritten or scene-text) and document image enhancement. We start by employing a transformer-based architecture that incorporates three pretext tasks as learning objectives to be optimized during pre-training without the usage of labelled data. Each of the pretext objectives is specifically tailored for the final downstream tasks. We conduct several ablation experiments that confirm the design choice of the selected pretext tasks. Importantly, the proposed model does not exhibit limitations of previous state-of-the-art methods based on contrastive losses, while at the same time requiring substantially fewer data samples to converge. Finally, we demonstrate that our method surpasses the state-of-the-art in existing supervised and self-supervised settings in handwritten and scene text recognition and document image enhancement. Our code and trained models will be made publicly available at https://github.com/dali92002/SSL-OCR  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) Medium  
  Area Expedition Conference AAAI  
  Notes DAG Approved no  
  Call Number Admin @ si @ SBM2023 Serial 3848  
Permanent link to this record
 

 
Author Mohamed Ali Souibgui; Pau Torras; Jialuo Chen; Alicia Fornes edit  url
openurl 
  Title An Evaluation of Handwritten Text Recognition Methods for Historical Ciphered Manuscripts Type Conference Article
  Year 2023 Publication 7th International Workshop on Historical Document Imaging and Processing Abbreviated Journal  
  Volume Issue Pages 7-12  
  Keywords  
  Abstract This paper investigates the effectiveness of different deep learning HTR families, including LSTM, Seq2Seq, and transformer-based approaches with self-supervised pretraining, in recognizing ciphered manuscripts from different historical periods and cultures. The goal is to identify the most suitable method or training techniques for recognizing ciphered manuscripts and to provide insights into the challenges and opportunities in this field of research. We evaluate the performance of these models on several datasets of ciphered manuscripts and discuss their results. This study contributes to the development of more accurate and efficient methods for recognizing historical manuscripts for the preservation and dissemination of our cultural heritage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) Medium  
  Area Expedition Conference HIP  
  Notes DAG Approved no  
  Call Number Admin @ si @ STC2023 Serial 3849  
Permanent link to this record
 

 
Author Pau Torras; Mohamed Ali Souibgui; Sanket Biswas; Alicia Fornes edit  url
openurl 
  Title Segmentation-Free Alignment of Arbitrary Symbol Transcripts to Images Type Conference Article
  Year 2023 Publication Document Analysis and Recognition – ICDAR 2023 Workshops Abbreviated Journal  
  Volume 14193 Issue Pages 83-93  
  Keywords Historical Manuscripts; Symbol Alignment  
  Abstract Developing arbitrary symbol recognition systems is a challenging endeavour. Even using content-agnostic architectures such as few-shot models, performance can be substantially improved by providing a number of well-annotated examples into training. In some contexts, transcripts of the symbols are available without any position information associated to them, which enables using line-level recognition architectures. A way of providing this position information to detection-based architectures is finding systems that can align the input symbols with the transcription. In this paper we discuss some symbol alignment techniques that are suitable for low-data scenarios and provide an insight on their perceived strengths and weaknesses. In particular, we study the usage of Connectionist Temporal Classification models, Attention-Based Sequence to Sequence models and we compare them with the results obtained on a few-shot recognition system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ TSS2023 Serial 3850  
Permanent link to this record
 

 
Author Marwa Dhiaf; Mohamed Ali Souibgui; Kai Wang; Yuyang Liu; Yousri Kessentini; Alicia Fornes; Ahmed Cheikh Rouhou edit   pdf
url  openurl
  Title CSSL-MHTR: Continual Self-Supervised Learning for Scalable Multi-script Handwritten Text Recognition Type Miscellaneous
  Year 2023 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Self-supervised learning has recently emerged as a strong alternative in document analysis. These approaches are now capable of learning high-quality image representations and overcoming the limitations of supervised methods, which require a large amount of labeled data. However, these methods are unable to capture new knowledge in an incremental fashion, where data is presented to the model sequentially, which is closer to the realistic scenario. In this paper, we explore the potential of continual self-supervised learning to alleviate the catastrophic forgetting problem in handwritten text recognition, as an example of sequence recognition. Our method consists in adding intermediate layers called adapters for each task, and efficiently distilling knowledge from the previous model while learning the current task. Our proposed framework is efficient in both computation and memory complexity. To demonstrate its effectiveness, we evaluate our method by transferring the learned model to diverse text recognition downstream tasks, including Latin and non-Latin scripts. As far as we know, this is the first application of continual self-supervised learning for handwritten text recognition. We attain state-of-the-art performance on English, Italian and Russian scripts, whilst adding only a few parameters per task. The code and trained models will be publicly available.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ DSW2023 Serial 3851  
Permanent link to this record
 

 
Author Mickael Coustaty; Alicia Fornes edit  url
openurl 
  Title Document Analysis and Recognition – ICDAR 2023 Workshops Type Book Whole
  Year 2023 Publication Document Analysis and Recognition – ICDAR 2023 Workshops Abbreviated Journal  
  Volume 14194 Issue 2 Pages  
  Keywords  
  Abstract  
  Address San Jose; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ CoF2023 Serial 3852  
Permanent link to this record
 

 
Author Akshita Gupta; Sanath Narayan; Salman Khan; Fahad Shahbaz Khan; Ling Shao; Joost Van de Weijer edit  doi
openurl 
  Title Generative Multi-Label Zero-Shot Learning Type Journal Article
  Year 2023 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 45 Issue 12 Pages 14611-14624  
  Keywords Generalized zero-shot learning; Multi-label classification; Zero-shot object detection; Feature synthesis  
  Abstract Multi-label zero-shot learning strives to classify images into multiple unseen categories for which no data is available during training. The test samples can additionally contain seen categories in the generalized variant. Existing approaches rely on learning either shared or label-specific attention from the seen classes. Nevertheless, computing reliable attention maps for unseen classes during inference in a multi-label setting is still a challenge. In contrast, state-of-the-art single-label generative adversarial network (GAN) based approaches learn to directly synthesize the class-specific visual features from the corresponding class attribute embeddings. However, synthesizing multi-label features from GANs is still unexplored in the context of zero-shot setting. When multiple objects occur jointly in a single image, a critical question is how to effectively fuse multi-class information. In this work, we introduce different fusion approaches at the attribute-level, feature-level and cross-level (across attribute and feature-levels) for synthesizing multi-label features from their corresponding multi-label class embeddings. To the best of our knowledge, our work is the first to tackle the problem of multi-label feature synthesis in the (generalized) zero-shot setting. Our cross-level fusion-based generative approach outperforms the state-of-the-art on three zero-shot benchmarks: NUS-WIDE, Open Images and MS COCO. Furthermore, we show the generalization capabilities of our fusion approach in the zero-shot detection task on MS COCO, achieving favorable performance against existing methods.  
  Address December 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) Medium  
  Area Expedition Conference  
  Notes LAMP; PID2021-128178OB-I00 Approved no  
  Call Number Admin @ si @ Serial 3853  
Permanent link to this record
 

 
Author JW Xiao; CB Zhang; J. Feng; Xialei Liu; Joost Van de Weijer; MM Cheng edit  doi
openurl 
  Title Endpoints Weight Fusion for Class Incremental Semantic Segmentation Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 7204-7213  
  Keywords  
  Abstract Class incremental semantic segmentation (CISS) focuses on alleviating catastrophic forgetting to improve discrimination. Previous work mainly exploit regularization (e.g., knowledge distillation) to maintain previous knowledge in the current model. However, distillation alone often yields limited gain to the model since only the representations of old and new models are restricted to be consistent. In this paper, we propose a simple yet effective method to obtain a model with strong memory of old knowledge, named Endpoints Weight Fusion (EWF). In our method, the model containing old knowledge is fused with the model retaining new knowledge in a dynamic fusion manner, strengthening the memory of old classes in ever-changing distributions. In addition, we analyze the relation between our fusion strategy and a popular moving average technique EMA, which reveals why our method is more suitable for class-incremental learning. To facilitate parameter fusion with closer distance in the parameter space, we use distillation to enhance the optimization process. Furthermore, we conduct experiments on two widely used datasets, achieving the state-of-the-art performance.  
  Address Vancouver; Canada; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) Medium  
  Area Expedition Conference CVPR  
  Notes LAMP Approved no  
  Call Number Admin @ si @ XZF2023 Serial 3854  
Permanent link to this record
 

 
Author Patricia Suarez; Dario Carpio; Angel Sappa edit  url
openurl 
  Title A Deep Learning Based Approach for Synthesizing Realistic Depth Maps Type Conference Article
  Year 2023 Publication 22nd International Conference on Image Analysis and Processing Abbreviated Journal  
  Volume 14234 Issue Pages 369–380  
  Keywords  
  Abstract This paper presents a novel cycle generative adversarial network (CycleGAN) architecture for synthesizing high-quality depth maps from a given monocular image. The proposed architecture uses multiple loss functions, including cycle consistency, contrastive, identity, and least square losses, to enable the generation of realistic and high-fidelity depth maps. The proposed approach addresses this challenge by synthesizing depth maps from RGB images without requiring paired training data. Comparisons with several state-of-the-art approaches are provided showing the proposed approach overcome other approaches both in terms of quantitative metrics and visual quality.  
  Address Udine; Italia; Setember 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) Medium  
  Area Expedition Conference ICIAP  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ SCS2023a Serial 3968  
Permanent link to this record
 

 
Author Jose Elias Yauri; M. Lagos; H. Vega-Huerta; P. de-la-Cruz; G.L.E Maquen-Niño; E. Condor-Tinoco edit  doi
openurl 
  Title Detection of Epileptic Seizures Based-on Channel Fusion and Transformer Network in EEG Recordings Type Journal Article
  Year 2023 Publication International Journal of Advanced Computer Science and Applications Abbreviated Journal IJACSA  
  Volume 14 Issue 5 Pages 1067-1074  
  Keywords Epilepsy; epilepsy detection; EEG; EEG channel fusion; convolutional neural network; self-attention  
  Abstract According to the World Health Organization, epilepsy affects more than 50 million people in the world, and specifically, 80% of them live in developing countries. Therefore, epilepsy has become among the major public issue for many governments and deserves to be engaged. Epilepsy is characterized by uncontrollable seizures in the subject due to a sudden abnormal functionality of the brain. Recurrence of epilepsy attacks change people’s lives and interferes with their daily activities. Although epilepsy has no cure, it could be mitigated with an appropriated diagnosis and medication. Usually, epilepsy diagnosis is based on the analysis of an electroencephalogram (EEG) of the patient. However, the process of searching for seizure patterns in a multichannel EEG recording is a visual demanding and time consuming task, even for experienced neurologists. Despite the recent progress in automatic recognition of epilepsy, the multichannel nature of EEG recordings still challenges current methods. In this work, a new method to detect epilepsy in multichannel EEG recordings is proposed. First, the method uses convolutions to perform channel fusion, and next, a self-attention network extracts temporal features to classify between interictal and ictal epilepsy states. The method was validated in the public CHB-MIT dataset using the k-fold cross-validation and achieved 99.74% of specificity and 99.15% of sensitivity, surpassing current approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number Admin @ si @ Serial 3856  
Permanent link to this record
 

 
Author M. Altillawi; S. Li; S.M. Prakhya; Z. Liu; Joan Serrat edit  doi
openurl 
  Title Implicit Learning of Scene Geometry From Poses for Global Localization Type Journal Article
  Year 2024 Publication IEEE Robotics and Automation Letters Abbreviated Journal ROBOTAUTOMLET  
  Volume 9 Issue 2 Pages 955-962  
  Keywords Localization; Localization and mapping; Deep learning for visual perception; Visual learning  
  Abstract Global visual localization estimates the absolute pose of a camera using a single image, in a previously mapped area. Obtaining the pose from a single image enables many robotics and augmented/virtual reality applications. Inspired by latest advances in deep learning, many existing approaches directly learn and regress 6 DoF pose from an input image. However, these methods do not fully utilize the underlying scene geometry for pose regression. The challenge in monocular relocalization is the minimal availability of supervised training data, which is just the corresponding 6 DoF poses of the images. In this letter, we propose to utilize these minimal available labels (i.e., poses) to learn the underlying 3D geometry of the scene and use the geometry to estimate the 6 DoF camera pose. We present a learning method that uses these pose labels and rigid alignment to learn two 3D geometric representations ( X, Y, Z coordinates ) of the scene, one in camera coordinate frame and the other in global coordinate frame. Given a single image, it estimates these two 3D scene representations, which are then aligned to estimate a pose that matches the pose label. This formulation allows for the active inclusion of additional learning constraints to minimize 3D alignment errors between the two 3D scene representations, and 2D re-projection errors between the 3D global scene representation and 2D image pixels, resulting in improved localization accuracy. During inference, our model estimates the 3D scene geometry in camera and global frames and aligns them rigidly to obtain pose in real-time. We evaluate our work on three common visual localization datasets, conduct ablation studies, and show that our method exceeds state-of-the-art regression methods' pose accuracy on all datasets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2377-3766 ISBN (down) Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Serial 3857  
Permanent link to this record
 

 
Author P. Canals; Simone Balocco; O. Diaz; J. Li; A. Garcia Tornel; M. Olive Gadea; M. Ribo edit  url
doi  openurl
  Title A fully automatic method for vascular tortuosity feature extraction in the supra-aortic region: unraveling possibilities in stroke treatment planning Type Journal Article
  Year 2023 Publication Computerized Medical Imaging and Graphics Abbreviated Journal CMIG  
  Volume 104 Issue 102170 Pages  
  Keywords Artificial intelligence; Deep learning; Stroke; Thrombectomy; Vascular feature extraction; Vascular tortuosity  
  Abstract Vascular tortuosity of supra-aortic vessels is widely considered one of the main reasons for failure and delays in endovascular treatment of large vessel occlusion in patients with acute ischemic stroke. Characterization of tortuosity is a challenging task due to the lack of objective, robust and effective analysis tools. We present a fully automatic method for arterial segmentation, vessel labelling and tortuosity feature extraction applied to the supra-aortic region. A sample of 566 computed tomography angiography scans from acute ischemic stroke patients (aged 74.8 ± 12.9, 51.0% females) were used for training, validation and testing of a segmentation module based on a U-Net architecture (162 cases) and a vessel labelling module powered by a graph U-Net (566 cases). Successively, 30 cases were processed for testing of a tortuosity feature extraction module. Measurements obtained through automatic processing were compared to manual annotations from two observers for a thorough validation of the method. The proposed feature extraction method presented similar performance to the inter-rater variability observed in the measurement of 33 geometrical and morphological features of the arterial anatomy in the supra-aortic region. This system will contribute to the development of more complex models to advance the treatment of stroke by adding immediate automation, objectivity, repeatability and robustness to the vascular tortuosity characterization of patients.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ CBD2023 Serial 4005  
Permanent link to this record
 

 
Author Francesc Net; Marc Folia; Pep Casals; Lluis Gomez edit  url
openurl 
  Title Transductive Learning for Near-Duplicate Image Detection in Scanned Photo Collections Type Conference Article
  Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 14191 Issue Pages 3-17  
  Keywords Image deduplication; Near-duplicate images detection; Transductive Learning; Photographic Archives; Deep Learning  
  Abstract This paper presents a comparative study of near-duplicate image detection techniques in a real-world use case scenario, where a document management company is commissioned to manually annotate a collection of scanned photographs. Detecting duplicate and near-duplicate photographs can reduce the time spent on manual annotation by archivists. This real use case differs from laboratory settings as the deployment dataset is available in advance, allowing the use of transductive learning. We propose a transductive learning approach that leverages state-of-the-art deep learning architectures such as convolutional neural networks (CNNs) and Vision Transformers (ViTs). Our approach involves pre-training a deep neural network on a large dataset and then fine-tuning the network on the unlabeled target collection with self-supervised learning. The results show that the proposed approach outperforms the baseline methods in the task of near-duplicate image detection in the UKBench and an in-house private dataset.  
  Address San Jose; CA; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ NFC2023 Serial 3859  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: