toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lu Yu; Vacit Oguz Yazici; Xialei Liu; Joost Van de Weijer; Yongmei Cheng; Arnau Ramisa edit   pdf
url  doi
openurl 
  Title Learning Metrics from Teachers: Compact Networks for Image Embedding Type Conference Article
  Year 2019 Publication 32nd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages (down) 2907-2916  
  Keywords  
  Abstract Metric learning networks are used to compute image embeddings, which are widely used in many applications such as image retrieval and face recognition. In this paper, we propose to use network distillation to efficiently compute image embeddings with small networks. Network distillation has been successfully applied to improve image classification, but has hardly been explored for metric learning. To do so, we propose two new loss functions that model the
communication of a deep teacher network to a small student network. We evaluate our system in several datasets, including CUB-200-2011, Cars-196, Stanford Online Products and show that embeddings computed using small student networks perform significantly better than those computed using standard networks of similar size. Results on a very compact network (MobileNet-0.25), which can be
used on mobile devices, show that the proposed method can greatly improve Recall@1 results from 27.5% to 44.6%. Furthermore, we investigate various aspects of distillation for embeddings, including hint and attention layers, semisupervised learning and cross quality distillation.
 
  Address Long beach; California; june 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes LAMP; 600.109; 600.120 Approved no  
  Call Number Admin @ si @ YYL2019 Serial 3281  
Permanent link to this record
 

 
Author Hongxing Gao; Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados edit   pdf
doi  openurl
  Title Embedding Document Structure to Bag-of-Words through Pair-wise Stable Key-regions Type Conference Article
  Year 2014 Publication 22nd International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages (down) 2903 - 2908  
  Keywords  
  Abstract Since the document structure carries valuable discriminative information, plenty of efforts have been made for extracting and understanding document structure among which layout analysis approaches are the most commonly used. In this paper, Distance Transform based MSER (DTMSER) is employed to efficiently extract the document structure as a dendrogram of key-regions which roughly correspond to structural elements such as characters, words and paragraphs. Inspired by the Bag
of Words (BoW) framework, we propose an efficient method for structural document matching by representing the document image as a histogram of key-region pairs encoding structural relationships.
Applied to the scenario of document image retrieval, experimental results demonstrate a remarkable improvement when comparing the proposed method with typical BoW and pyramidal BoW methods.
 
  Address Stockholm; Sweden; August 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 600.056; 600.061; 600.077 Approved no  
  Call Number Admin @ si @ GRK2014b Serial 2497  
Permanent link to this record
 

 
Author Rahat Khan; Joost Van de Weijer; Fahad Shahbaz Khan; Damien Muselet; christophe Ducottet; Cecile Barat edit   pdf
doi  openurl
  Title Discriminative Color Descriptors Type Conference Article
  Year 2013 Publication IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages (down) 2866 - 2873  
  Keywords  
  Abstract Color description is a challenging task because of large variations in RGB values which occur due to scene accidental events, such as shadows, shading, specularities, illuminant color changes, and changes in viewing geometry. Traditionally, this challenge has been addressed by capturing the variations in physics-based models, and deriving invariants for the undesired variations. The drawback of this approach is that sets of distinguishable colors in the original color space are mapped to the same value in the photometric invariant space. This results in a drop of discriminative power of the color description. In this paper we take an information theoretic approach to color description. We cluster color values together based on their discriminative power in a classification problem. The clustering has the explicit objective to minimize the drop of mutual information of the final representation. We show that such a color description automatically learns a certain degree of photometric invariance. We also show that a universal color representation, which is based on other data sets than the one at hand, can obtain competing performance. Experiments show that the proposed descriptor outperforms existing photometric invariants. Furthermore, we show that combined with shape description these color descriptors obtain excellent results on four challenging datasets, namely, PASCAL VOC 2007, Flowers-102, Stanford dogs-120 and Birds-200.  
  Address Portland; Oregon; June 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-6919 ISBN Medium  
  Area Expedition Conference CVPR  
  Notes CIC; 600.048 Approved no  
  Call Number Admin @ si @ KWK2013a Serial 2262  
Permanent link to this record
 

 
Author Ivo Everts; Jan van Gemert; Theo Gevers edit  doi
openurl 
  Title Evaluation of Color STIPs for Human Action Recognition Type Conference Article
  Year 2013 Publication IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages (down) 2850-2857  
  Keywords  
  Abstract This paper is concerned with recognizing realistic human actions in videos based on spatio-temporal interest points (STIPs). Existing STIP-based action recognition approaches operate on intensity representations of the image data. Because of this, these approaches are sensitive to disturbing photometric phenomena such as highlights and shadows. Moreover, valuable information is neglected by discarding chromaticity from the photometric representation. These issues are addressed by Color STIPs. Color STIPs are multi-channel reformulations of existing intensity-based STIP detectors and descriptors, for which we consider a number of chromatic representations derived from the opponent color space. This enhanced modeling of appearance improves the quality of subsequent STIP detection and description. Color STIPs are shown to substantially outperform their intensity-based counterparts on the challenging UCF~sports, UCF11 and UCF50 action recognition benchmarks. Moreover, the results show that color STIPs are currently the single best low-level feature choice for STIP-based approaches to human action recognition.  
  Address Portland; oregon; June 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-6919 ISBN Medium  
  Area Expedition Conference CVPR  
  Notes ALTRES;ISE Approved no  
  Call Number Admin @ si @ EGG2013 Serial 2364  
Permanent link to this record
 

 
Author Victor Ponce; Mario Gorga; Xavier Baro; Sergio Escalera edit  url
doi  isbn
openurl 
  Title Human Behavior Analysis from Video Data Using Bag-of-Gestures Type Conference Article
  Year 2011 Publication 22nd International Joint Conference on Artificial Intelligence Abbreviated Journal  
  Volume 3 Issue Pages (down) 2836-2837  
  Keywords  
  Abstract Human Behavior Analysis in Uncontrolled Environments can be categorized in two main challenges: 1) Feature extraction and 2) Behavior analysis from a set of corporal language vocabulary. In this work, we present our achievements characterizing some simple behaviors from visual data on different real applications and discuss our plan for future work: low level vocabulary definition from bag-of-gesture units and high level modelling and inference of human behaviors.  
  Address Barcelona  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-57735-516-8 Medium  
  Area Expedition Conference IJCAI  
  Notes HuPBA;MV Approved no  
  Call Number Admin @ si @ PGB2011b Serial 1770  
Permanent link to this record
 

 
Author Joakim Bruslund Haurum; Meysam Madadi; Sergio Escalera; Thomas B. Moeslund edit   pdf
url  doi
openurl 
  Title Multi-Task Classification of Sewer Pipe Defects and Properties Using a Cross-Task Graph Neural Network Decoder Type Conference Article
  Year 2022 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages (down) 2806-2817  
  Keywords Vision Systems; Applications Multi-Task Classification  
  Abstract The sewerage infrastructure is one of the most important and expensive infrastructures in modern society. In order to efficiently manage the sewerage infrastructure, automated sewer inspection has to be utilized. However, while sewer
defect classification has been investigated for decades, little attention has been given to classifying sewer pipe properties such as water level, pipe material, and pipe shape, which are needed to evaluate the level of sewer pipe deterioration.
In this work we classify sewer pipe defects and properties concurrently and present a novel decoder-focused multi-task classification architecture Cross-Task Graph Neural Network (CT-GNN), which refines the disjointed per-task predictions using cross-task information. The CT-GNN architecture extends the traditional disjointed task-heads decoder, by utilizing a cross-task graph and unique class node embeddings. The cross-task graph can either be determined a priori based on the conditional probability between the task classes or determined dynamically using self-attention.
CT-GNN can be added to any backbone and trained end-toend at a small increase in the parameter count. We achieve state-of-the-art performance on all four classification tasks in the Sewer-ML dataset, improving defect classification and
water level classification by 5.3 and 8.0 percentage points, respectively. We also outperform the single task methods as well as other multi-task classification approaches while introducing 50 times fewer parameters than previous modelfocused approaches.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ BME2022 Serial 3638  
Permanent link to this record
 

 
Author Fernando Barrera; Felipe Lumbreras; Angel Sappa edit  doi
isbn  openurl
  Title Multimodal Template Matching based on Gradient and Mutual Information using Scale-Space Type Conference Article
  Year 2010 Publication 17th IEEE International Conference on Image Processing Abbreviated Journal  
  Volume Issue Pages (down) 2749–2752  
  Keywords  
  Abstract This paper presents the combined use of gradient and mutual information for infrared and intensity templates matching. We propose to joint: (i) feature matching in a multiresolution context and (ii) information propagation through scale-space representations. Our method consists in combining mutual information with a shape descriptor based on gradient, and propagate them following a coarse-to-fine strategy. The main contributions of this work are: to offer a theoretical formulation towards a multimodal stereo matching; to show that gradient and mutual information can be reinforced while they are propagated between consecutive levels; and to show that they are valid cost functions in multimodal template matchings. Comparisons are presented showing the improvements and viability of the proposed approach.  
  Address Hong-Kong  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1522-4880 ISBN 978-1-4244-7992-4 Medium  
  Area Expedition Conference ICIP  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ BLS2010 Serial 1358  
Permanent link to this record
 

 
Author Mario Rojas; David Masip; A. Todorov; Jordi Vitria edit  doi
isbn  openurl
  Title Automatic Point-based Facial Trait Judgments Evaluation Type Conference Article
  Year 2010 Publication 23rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages (down) 2715–2720  
  Keywords  
  Abstract Humans constantly evaluate the personalities of other people using their faces. Facial trait judgments have been studied in the psychological field, and have been determined to influence important social outcomes of our lives, such as elections outcomes and social relationships. Recent work on textual descriptions of faces has shown that trait judgments are highly correlated. Further, behavioral studies suggest that two orthogonal dimensions, valence and dominance, can describe the basis of the human judgments from faces. In this paper, we used a corpus of behavioral data of judgments on different trait dimensions to automatically learn a trait predictor from facial pixel images. We study whether trait evaluations performed by humans can be learned using machine learning classifiers, and used later in automatic evaluations of new facial images. The experiments performed using local point-based descriptors show promising results in the evaluation of the main traits.  
  Address San Francisco CA, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-6919 ISBN 978-1-4244-6984-0 Medium  
  Area Expedition Conference CVPR  
  Notes OR;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ RMT2010 Serial 1282  
Permanent link to this record
 

 
Author Hugo Berti; Angel Sappa; Osvaldo Agamennoni edit  openurl
  Title Autonomous robot navigation with a global and asymptotic convergence Type Conference Article
  Year 2007 Publication IEEE International Conference on Robotics and Automation Abbreviated Journal  
  Volume Issue Pages (down) 2712–2717  
  Keywords  
  Abstract  
  Address Roma (Italy)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICRA  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ BSA2007 Serial 796  
Permanent link to this record
 

 
Author Armin Mehri; Parichehr Behjati Ardakani; Angel Sappa edit   pdf
url  doi
openurl 
  Title MPRNet: Multi-Path Residual Network for Lightweight Image Super Resolution Type Conference Article
  Year 2021 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages (down) 2703-2712  
  Keywords  
  Abstract Lightweight super resolution networks have extremely importance for real-world applications. In recent years several SR deep learning approaches with outstanding achievement have been introduced by sacrificing memory and computational cost. To overcome this problem, a novel lightweight super resolution network is proposed, which improves the SOTA performance in lightweight SR and performs roughly similar to computationally expensive networks. Multi-Path Residual Network designs with a set of Residual concatenation Blocks stacked with Adaptive Residual Blocks: ($i$) to adaptively extract informative features and learn more expressive spatial context information; ($ii$) to better leverage multi-level representations before up-sampling stage; and ($iii$) to allow an efficient information and gradient flow within the network. The proposed architecture also contains a new attention mechanism, Two-Fold Attention Module, to maximize the representation ability of the model. Extensive experiments show the superiority of our model against other SOTA SR approaches.  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes MSIAU; 600.130; 600.122 Approved no  
  Call Number Admin @ si @ MAS2021b Serial 3582  
Permanent link to this record
 

 
Author Parichehr Behjati Ardakani; Pau Rodriguez; Armin Mehri; Isabelle Hupont; Carles Fernandez; Jordi Gonzalez edit   pdf
doi  openurl
  Title OverNet: Lightweight Multi-Scale Super-Resolution with Overscaling Network Type Conference Article
  Year 2021 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages (down) 2693-2702  
  Keywords  
  Abstract Super-resolution (SR) has achieved great success due to the development of deep convolutional neural networks (CNNs). However, as the depth and width of the networks increase, CNN-based SR methods have been faced with the challenge of computational complexity in practice. More- over, most SR methods train a dedicated model for each target resolution, losing generality and increasing memory requirements. To address these limitations we introduce OverNet, a deep but lightweight convolutional network to solve SISR at arbitrary scale factors with a single model. We make the following contributions: first, we introduce a lightweight feature extractor that enforces efficient reuse of information through a novel recursive structure of skip and dense connections. Second, to maximize the performance of the feature extractor, we propose a model agnostic reconstruction module that generates accurate high-resolution images from overscaled feature maps obtained from any SR architecture. Third, we introduce a multi-scale loss function to achieve generalization across scales. Experiments show that our proposal outperforms previous state-of-the-art approaches in standard benchmarks, while maintaining relatively low computation and memory requirements.  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes ISE; 600.119; 600.098 Approved no  
  Call Number Admin @ si @ BRM2021 Serial 3512  
Permanent link to this record
 

 
Author Jose Carlos Rubio; Joan Serrat; Antonio Lopez; N. Paragios edit   pdf
url  isbn
openurl 
  Title Image Contextual Representation and Matching through Hierarchies and Higher Order Graphs Type Conference Article
  Year 2012 Publication 21st International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages (down) 2664 - 2667  
  Keywords  
  Abstract We present a region matching algorithm which establishes correspondences between regions from two segmented images. An abstract graph-based representation conceals the image in a hierarchical graph, exploiting the scene properties at two levels. First, the similarity and spatial consistency of the image semantic objects is encoded in a graph of commute times. Second, the cluttered regions of the semantic objects are represented with a shape descriptor. Many-to-many matching of regions is specially challenging due to the instability of the segmentation under slight image changes, and we explicitly handle it through high order potentials. We demonstrate the matching approach applied to images of world famous buildings, captured under different conditions, showing the robustness of our method to large variations in illumination and viewpoint.  
  Address Tsukuba Science City, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN 978-1-4673-2216-4 Medium  
  Area Expedition Conference ICPR  
  Notes ADAS Approved no  
  Call Number Admin @ si @ RSL2012a; Serial 2032  
Permanent link to this record
 

 
Author Shanxin Yuan; Guillermo Garcia-Hernando; Bjorn Stenger; Gyeongsik Moon; Ju Yong Chang; Kyoung Mu Lee; Pavlo Molchanov; Jan Kautz; Sina Honari; Liuhao Ge; Junsong Yuan; Xinghao Chen; Guijin Wang; Fan Yang; Kai Akiyama; Yang Wu; Qingfu Wan; Meysam Madadi; Sergio Escalera; Shile Li; Dongheui Lee; Iason Oikonomidis; Antonis Argyros; Tae-Kyun Kim edit   pdf
doi  openurl
  Title Depth-Based 3D Hand Pose Estimation: From Current Achievements to Future Goals Type Conference Article
  Year 2018 Publication 31st IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages (down) 2636 - 2645  
  Keywords Three-dimensional displays; Task analysis; Pose estimation; Two dimensional displays; Joints; Training; Solid modeling  
  Abstract In this paper, we strive to answer two questions: What is the current state of 3D hand pose estimation from depth images? And, what are the next challenges that need to be tackled? Following the successful Hands In the Million Challenge (HIM2017), we investigate the top 10 state-of-the-art methods on three tasks: single frame 3D pose estimation, 3D hand tracking, and hand pose estimation during object interaction. We analyze the performance of different CNN structures with regard to hand shape, joint visibility, view point and articulation distributions. Our findings include: (1) isolated 3D hand pose estimation achieves low mean errors (10 mm) in the view point range of [70, 120] degrees, but it is far from being solved for extreme view points; (2) 3D volumetric representations outperform 2D CNNs, better capturing the spatial structure of the depth data; (3) Discriminative methods still generalize poorly to unseen hand shapes; (4) While joint occlusions pose a challenge for most methods, explicit modeling of structure constraints can significantly narrow the gap between errors on visible and occluded joints.  
  Address Salt Lake City; USA; June 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ YGS2018 Serial 3115  
Permanent link to this record
 

 
Author Murad Al Haj; Jordi Gonzalez; Larry S. Davis edit  doi
isbn  openurl
  Title On Partial Least Squares in Head Pose Estimation: How to simultaneously deal with misalignment Type Conference Article
  Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages (down) 2602-2609  
  Keywords  
  Abstract Head pose estimation is a critical problem in many computer vision applications. These include human computer interaction, video surveillance, face and expression recognition. In most prior work on heads pose estimation, the positions of the faces on which the pose is to be estimated are specified manually. Therefore, the results are reported without studying the effect of misalignment. We propose a method based on partial least squares (PLS) regression to estimate pose and solve the alignment problem simultaneously. The contributions of this paper are two-fold: 1) we show that the kernel version of PLS (kPLS) achieves better than state-of-the-art results on the estimation problem and 2) we develop a technique to reduce misalignment based on the learned PLS factors.  
  Address Providence, Rhode Island  
  Corporate Author Thesis  
  Publisher IEEE Xplore Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-6919 ISBN 978-1-4673-1226-4 Medium  
  Area Expedition Conference CVPR  
  Notes ISE Approved no  
  Call Number Admin @ si @ HGD2012 Serial 2029  
Permanent link to this record
 

 
Author Cesar de Souza; Adrien Gaidon; Yohann Cabon; Antonio Lopez edit   pdf
doi  openurl
  Title Procedural Generation of Videos to Train Deep Action Recognition Networks Type Conference Article
  Year 2017 Publication 30th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages (down) 2594-2604  
  Keywords  
  Abstract Deep learning for human action recognition in videos is making significant progress, but is slowed down by its dependency on expensive manual labeling of large video collections. In this work, we investigate the generation of synthetic training data for action recognition, as it has recently shown promising results for a variety of other computer vision tasks. We propose an interpretable parametric generative model of human action videos that relies on procedural generation and other computer graphics techniques of modern game engines. We generate a diverse, realistic, and physically plausible dataset of human action videos, called PHAV for ”Procedural Human Action Videos”. It contains a total of 39, 982 videos, with more than 1, 000 examples for each action of 35 categories. Our approach is not limited to existing motion capture sequences, and we procedurally define 14 synthetic actions. We introduce a deep multi-task representation learning architecture to mix synthetic and real videos, even if the action categories differ. Our experiments on the UCF101 and HMDB51 benchmarks suggest that combining our large set of synthetic videos with small real-world datasets can boost recognition performance, significantly
outperforming fine-tuning state-of-the-art unsupervised generative models of videos.
 
  Address Honolulu; Hawaii; July 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes ADAS; 600.076; 600.085; 600.118 Approved no  
  Call Number Admin @ si @ SGC2017 Serial 3051  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: