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Abstract

Lightweight super resolution networks have extremely
importance for real-world applications. In recent years
several SR deep learning approaches with outstanding
achievement have been introduced by sacrificing memory
and computational cost. To overcome this problem, a novel
lightweight super resolution network is proposed, which im-
proves the SOTA performance in lightweight SR and per-
forms roughly similar to computationally expensive net-
works. Multi-Path Residual Network designs with a set
of Residual concatenation Blocks stacked with Adaptive
Residual Blocks: (i) to adaptively extract informative fea-
tures and learn more expressive spatial context information;
(ii) to better leverage multi-level representations before up-
sampling stage; and (iii) to allow an efficient information
and gradient flow within the network. The proposed archi-
tecture also contains a new attention mechanism, Two-Fold
Attention Module, to maximize the representation ability of
the model. Extensive experiments show the superiority of
our model against other SOTA SR approaches.

1. Introduction
Single Image Super Resolution (SISR) targets to re-

cover a high-resolution (HR) image from its degraded low-
resolution (LR) one with a high visual quality and enhanced
details. SISR is still an active yet challenging topic to re-
search due to its complex nature and high practical values
in improving image details and textures. SR is also critical
for many devices such as HD TVs, computer displays and
portable devices like cameras, smartphones, tablets, just to
mention a few. Moreover, it leads to improvements in var-
ious computer vision tasks, such as object detection [9],
medical imaging [10], security and surveillance imaging
[49], face recognition [31], astronomical images [28] and
many other domains [25, 41, 43]. Image super-resolution
is challenging due to the following reasons: i) SR is an
ill-posed inverse problem, since instead of a single unique
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Figure 1: PSNR vs. Parameters trade-off on Set5 (×4). MPRNet
achieves superior performance among all lightweight models.

solution, there exist multiple solutions for the same low-
resolution image; and ii) as the up-scaling factor increases,
the complexity of the problem increases [7]. The retrieval of
missing scene details becomes even more complicated with
greater factors, which often leads to the reproduction of in-
correct information. Due to the rapid development of deep
learning methods, recent years have witnessed an explosive
spread of CNN models to perform SISR. The obtained per-
formance has been consistently improved by designing new
architectures or introducing new loss functions. Though
significant advances have been made, most of the works in
SR were dedicated to achieve higher PSNR with the design
of a very deep network, which causes the increase in the
numbers of computational operations.

In this paper, to design a practical network for real-
world applications and tackle with mentioned downsides,
a novel lightweight architecture is introduced, referred to
as Multi-Path Residual Network (MPRNet), to adaptively
learn most valuable features and construct the network to
focus on learning high-frequency information. Addition-
ally, to seek a better trade-off between performance and
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applicability, we introduce a novel module, referred to as
Residual Module (RM), which contains Residual Concate-
nation Blocks that are connected to each other with a Global
Residual connection; build with a set of Adaptive Residual
Blocks (ARB) with a Local Residual Connection (LRC).
Each ARB is defined as a divers residual pathways learn-
ing to make use of all kind of information form LR im-
age space, which the main parts of the network can access
to more rich information. So, our MPRNet design has the
benefits of multi-level learning connections and also takes
advantage of propagating information throughout the net-
work. As a result, each block has access to information of
the precedent block via local and global residual connec-
tions and passes on information that needs to be preserved.
By concatenating different blocks followed by 1 × 1 con-
volutional layer the network can reach to both intermediate
and high-frequency information, resulting in a better image
reconstruction. Finally, in order to enhance the representa-
tion of the model and even make it robust against challeng-
ing datasets and noise, we propose a lightweight and effi-
cient attention mechanism, Two-Fold Attention Mechanism
(TFAM). TFAM is working by considering both the inner
channel and spatial information to highlight the important
information. This TFAM helps to adaptively preserve es-
sential information and overpower the useless ones. The
proposed model is illustrated in Fig. 2. In brief, the main
contributions are in three-fold:

• An efficient Adaptive Residual Block (ARB) is pro-
posed by well-focusing on spatial information via a
multi-path residual learning to enhance the perfor-
mance at a negligible computational cost. Comprehen-
sive study shows the excellent performance of ARB.

• A new attention mechanism (TFAM) is proposed to
adaptively re-scale feature maps in order to maximize
the representation power of the network. Since its low-
cost, it can be easily applied to other networks, and
has the better performance than other Attention Mech-
anisms.

• A lightweight network (MPRNet) is proposed to ef-
fectively enhance the performance via multi-level rep-
resentation and multiple learning connections. The
MPRNet is built by fusing the proposed ARB with
the robust TFAM to generate more accurate SR image.
MPRNet achieves the excellent performance among all
the lightweight state-of-the-art approaches with lower
model size and computational cost (Fig. 1).

2. Related Work

In this section, recent state-of-the-art SR deep learning
approaches are detailed. In section 2.2, SR lightweight

models, which focus on compressing the number of param-
eters and operations are reviewed. Finally, an overview of
Attention Mechanisms is given in section 2.3.

2.1. Deep Learning Based Image Super-Resolution

Dong et al. [7] present one of the first work using CNN
to tackle the SR task (i.e., SRCNN). The SRCNN receives
an upsampled image as an input that cost extra computa-
tion. Later on, to address this drawback, FSRCNN [8] and
ESPCN [35] have been proposed to reduce the large compu-
tational and run time cost by upsampling the features near
to the output of the network. This tactic leads results in ef-
ficient approaches with low memory compared to SRCNN.
However, the entire performance could be reduced if there
are not enough layers after the upsampling process. In ad-
dition, they cannot manage multi-scale training, as the size
of the input image differs for each upsampling scale.

Even though the strength of deep learning shows up from
deep layers, the above-mentioned methods are referred to
as shallow network due to the training difficulties. There-
fore, Kim et al. [18] use residual learning to ease the train-
ing challenges and increase the depth of their network by
adding 20 convolutional layers. Then, [37] has proposed
memory block in MemNet for deeper networks and solve
the problem of long-term dependency with 84 layers. Thus,
CNN-based SR approaches demonstrate that deeper net-
works with various types of skip connections show better
performance. Thereby, Lim et al. [24] introduce EDSR
by expanding the network size and enhancing the resid-
ual block by omitting the batch normalization from residual
block. Zhang et al. [47] propose RDN with residual and
dense skip connections to fully use hierarchical features. Li
et al. [22] propose a network with more than 160 layers
plus improved residual units. Despite of the fact that they
achieve higher PSNR values, the number of parameters and
operations are increased, which leads to high risk of over-
fitting and limits for real-world applications.

2.2. Deep Learning Lightweights Super Resolution

In recent years the interest of building lightweight and
efficient models has been increased in SISR to reduce
the computational cost. Several lightweight networks
have been introduced, such as SRCNN [7], FSRCNN[8],
ESPCN[35], which were the first attempts, but they could
not perform well. Later, Ahn et al. [1] design a network
that is suitable in the mobile scenario by implementing a
cascade mechanism beyond a residual network (CARN), in
order to obtain lightweight and improve reconstruction but
it is at the cost of reduction of PSNR. Then, a neural ar-
chitecture search (NAS)-based strategy has been also pro-
posed in SISR to construct efficient networks—MoreMNA-
S [4] and FALSR [3]. But due to limitation in strategy, the
performance of these models are limited. Later, [32] in-
troduces MAFFSRN by proposing multi-attention blocks to
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Figure 2: The overall network architecture of the proposed Multi-Path Residual Network (MPRNet).

improve the performance. Recently, LatticeNet [27] intro-
duces an economical structure to adaptively combine Resid-
ual Blocks, which achieve good results. All these works
suggest that the lightweight SR networks can keep a good
trade-off between PSNR and parameters.

2.3. Attention Mechanism

Attention can be described as a guide to bias the alloca-
tion of available computer resources to the most important
informative elements of an input. Recently, some works
have focused on attention mechanism for deep neural net-
works. Hu et al. [15] introduce squeeze-and-excitation
(SE) block, a compact module to leverage the relationship
between channels. Also, Woo et al. [42] propose a Con-
volutional Block Attention Module (CBAM) to exploit the
inner-spatial and inner-channel relationship of features to
achieve a performance improvement in image classification.

Recently, RCAN [46] designs a very deep network with
a channel attention mechanism to enhance the reconstruc-
tion results by only considering inner-channel information,
which call first-order statistics. In contrast, Dai et al. [5]
introduce the second-order attention network in order to
explore more powerful feature expression. More recently,
Li et al., [27] propose enhanced spatial attention (ESA) to
make the residual features to be more focused on critical
spatial contents. In the current work, motivated by attention
mechanisms and considering that there are different types
of information within and across feature space, which have
different contributions for image SR, a Two-Fold Attention
Mechanism is proposed that adaptively highlight the impor-
tant information by considering both channel and spatial in-
formation to boost the performance of the network.

3. Multi-Path Residual Network
3.1. Network Structure

The proposed model (MPRNet – Fig 2) consists of
four different modules, namely, Shallow Feature Extrac-
tion (SFE); Residual Module that contains Residual Con-
catenation Blocks (RCBs); Feature Module that includes a
Two-Fold Attention Mechanism (TFAM) and a Global Fea-
ture Extractor with a Long-Range Skip Connection; and the
multi-scale UP-Net module at the end of network. Let’s
consider {ILR, ISR} as the input and output of the network
respectively. The SFE is a Conv layer with a kernel size of
3× 3, which can be formulated as follow:

HSFE = fSFE(ILR;Wc), (1)

where fSFE(·) and Wc indicates Conv operation and pa-
rameters applied on ILR. HSFE denotes the output of SFE,
which later is used as the input to Residual Module. Lets
Hi,j

RM be the output from the i-th Residual Concatenation
Block (RCB) that has j-th inner Adaptive Residual Blocks
(ARBs). The Residual Module can be defined as:

HRM =

f([HSFE , ...,H
i−1
RCB(H

j−1,R
ARB ;W j

c ),H
i
RCB ];W

i
c),
(2)

where HRM is the output of the Residual Module. Note
that our RM contains multi-level learning connections fol-
lowed by a 1× 1 Conv layer to control the output after each
block, which helps our model to quickly propagate informa-
tion all over the network (lower to higher layers and vice-
versa in term of back propagation) and also let the network
to learn multi-level representations. So, i-th RCB can be
defined as:

Hi
RCB = f([Hj,R

ARB , ...,H
j−1,R
ARB (Hi−1;W i

c)];W
j
c ).

(3)
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Figure 3: Illustrations of different structure of residual blocks: a) Residual block in EDSR [24]; b) Bottleneck with inverted residual from
[14]; c) Proposed Adaptive Residual Block and Two-Fold Attettion Module.

Then, the output of RM feed to the Feature Module by
firstly refining the feature maps (i.e., re-calibrate) through-
out the TFAM and then extracting more abstract features.
Later, accumulate with LRSC to efficiently alleviate the gra-
dient vanishing/exploding problems and make sure that net-
work has access to unmodified information before UP-Net:

HFM = fGFE(HTFAM (HRM ;Wc);Wc) +HLRC ,
(4)

where HTFAM denotes our TFAM and HLRC is Long-
Range Residual Connection. The last stage is the Multi-
Scale Up-Net Module to reconstruct the image from ob-
tained feature-maps. The upsampling module is inspired
by [1] and followed by a Conv layer:

HUP = f↑pix(HFM ), (5)

where f↑pix(·) indicates the Up-net module function and
HFM is the output of FM. The upsampled features are re-
constructed with a Conv layer:

ISR = fREC(Hup) = HMPRNet(ILR), (6)

where fREC(·) and HMPRNet(·) denote the reconstruction
layer and function of our MPRNet. In the next subsections,
more details about the Adaptive Residual Block and Two
Fold Attention Mechanism are given.

3.2. Adaptive Residual Block

This research focuses on designing a efficient and effec-
tive Residual Block based on Depthwise (Dw) and Point-
wise (Pw) Convolutions for SISR. [34] introduced linear
bottleneck with an inverted residual structure. However,
this structure deliver chances of losing information and

weaken the propagation capability of gradients across lay-
ers, due to gradient confusion arising from the narrowed
feature space [6, 21]. Thus, we propose a novel Resid-
ual Block that mitigates the aforementioned issues; it is
well-optimized especially for the SR tasks, called Adaptive
Residual Block (ARB). Unlike [34], ARB introduces new
features and operations by proposing a multi learning path-
ways with a completely new structure. Each learning path
is responsible to extract different kind of information before
aggregation. So, the main part of network can have access
to more rich information and performs notably well in noisy
LR and generates more accurate SR image. The ARB con-
sists of three different learning pathways that are detailed
below. Fig 3 shows each of the ARB components.

Bottleneck Path: We design our Bottleneck path (BN)
based on the following insights: i) Extract richer spatial in-
formation since spatial information is key importance in SR
tasks; ii) prevent very wide feature maps in the middle of
the building block, which unavoidably growing the compu-
tational load of relevant layers; iii) preserve the BN path
low-cost and efficient. Thus, Dw Convolutions with small
kernel size (3×3) are chosen since they are lightweight and
they can learn expressive features when conducted to the
high dimensional space. So, we initiate the BN path by
using a Dw convolution with kernel size 3×3 towards the
high dimensional features space to richer spatial informa-
tion to be encoded and generate meaningful representations.
Also, a Pw convolution is used after each Dw convolution
in our design to produce new features by encoding the inter-
channel information and reduce the computational cost. We
shared the same number of channels and resolution along
the BN path to prevent of sudden rise of computational bur-
den in middle of the path. Furthermore, we conjunct our
TFAM into the BN path after the second Dw convolution



to spotlight the informative features along the channel and
spatial axes. By doing so, the BN path is working with high
dimensional features space, which makes the pathway effi-
cient, low-cost, and well-focused on spatial context infor-
mation compared to [34].

Adaptive Path: It is proposed by taking the advantages
of global average pooling accompanied by a 1×1 Pw con-
volution. Average Pooling layers have been employed to
take the average value of the features from the feature space
to smooth and eliminate the noise from the LR image and
reduce the dimensionality of each feature map but retains
the important information to help the network to generate
robust feature maps in challenging situations—noisy LR
image. So, the network can generate a sharper and well-
detailed SR image.

Residual Path: Unlike [34] that puts the residual path
between narrowed feature space that cause gradient confu-
sion, in our ARB, we place the residual path on the high
dimensional representations to transfer more information
from the bottom- to top-layers. Such structure facilitate the
gradient propagation between multiple layers and help the
network to optimize better during training.

Thus, the information from BN- and Res-paths aggregate
together, followed by another Dw convolution. We found
out adding the Dw convolution before final aggregation
with Adp path is essential for performance improvement
since Dw encourage the network to learn more meaning-
ful spatial information. Extensive experiments show that,
our ARB is more beneficial than the existed ones for SISR
tasks and improved the results with a large margin.

3.3. Two-Fold Attention Module

A novel Attention Mechanism (TFAM) has been pro-
posed to boost the performance of our Adaptive Residual
Block and refine the high-level information in the Feature
Module (FM) by focusing on both channel and spatial in-
formation. The best way to amplify efficiency of ARB is
through the union of the channel and spatial attention mech-
anism, since the residual features need to be well-focused
on both information. In detail, TFAM is designed to focus
on the important features on the channel information via
CA unit and spotlight on the region of interest via Pos unit.
Thus, each unit can learn ‘what’ and ‘where’ to attend in the
channel and spatial axes respectively to recover edges and
textures more accurately. As a result, TFAM works better
than other attention mechanism [15, 16, 27, 42] by empha-
sising informative features and reducing worthless ones.

Channel Unit. CA unit starts with an average pooling
to exploit first-order statistics of features followed by two
Conv layer, which they work side by side, each seeing half
of the input channels, and producing half the output chan-
nels, and both subsequently concatenated to even have more
low-cost unit. Thus, CA unit modulates features globally,

where the summary statistics per channel are computed.
Then, used to emphasize meaningful feature maps while
redundant useless features are diminished. Especially, CA
unit focuses on ‘what’ is meaningful given an input image.

Positional Unit. Pos unit designed as a complementary
unit to our CA unit. The feature map information is varied
over spatial positions therefore, Pos unit concerns about the
position of the informative part of the image and focuses on
that region. Pos unit requires a large receptive field to work
perfectly in SR tasks unlike the classification task. Thus,
Average- and Max pooling operations with a large kernel
size have been employed and then concatenated them to
generate an efficient feature descriptor. afterward, an Up-
Sampling layer is used to retrieve the spatial dimensions,
which is followed by a Conv layer to generate a spatial at-
tention map.

Finally, highlighted information from both units aggre-
gated together followed a 1×1 Conv layer and a sigmoid
operation to firstly, recover the channel dimensions and then
generate the final attention mask. Also, a residual connec-
tion used to transfer HR features to the end of module.

4. Experimental Results
4.1. Setting

Datasets & Evaluation Protocol. Following previous
works [5, 27], we useDIV 2K [38] dataset to train (800 im-
ages) and validate (100 images) our model. The proposed
model is evaluated with the standard benchmark datasets,
namely, Set5 [2], Set14 [44], B100 [30], and Urban100
[17]. Two widely used quantitative metrics have been con-
sidered to measure its performance: PSNR and SSIM [40],
computed between the obtained images and the correspond-
ing ground truths. Both metrics are computed on the Y
channel in the Y CbCr space.

Degradation Models. Following the work of [47], three
different degradation models created to simulate LR images
and make fair comparisons with available methods. Firstly,
a bicubic (BI) down-sampling dataset with scaling factors
[×2, ×3, ×4] has been created. Blur-Down-sampled (BD)
is the second one to blur and down-sample HR images with
a Gaussian kernel 7×7, and σ = 1.6. Then, images are
down-sampled with scaling factor ×3. Aside from the BD,
a more challenging model has been created, referred to as
(DN). DN degradation model is down-sampling HR images
with bicubic followed by adding 30% Gaussian noise.

Training Details. In the training stage, RGB input
patches are used with size of 64×64 from each of the ran-
domly selected 64 LR training images. Patches are aug-
mented by random horizontally flips and 90 degree rota-
tion. AdamP [13] optimizer has been employed. The initial
learning rate set to 10−3 and its halved every 4× 105 steps.
L1 is used as loss function to optimize the model. The Py-
Torch framework is used.



Table 1: Comparison with lightweight SOTA methods on the Bicubic (BI) degradation for scale factors [×2,×3,×4]. Red is the Best and
Blue is the second best performance. We assume that the generated SR image is 720P to calculate Multi-Adds (MAC).

Params-MAC
Dataset

Methods
×4

Scale

VDSR [18]
655K − 612.6G

PSNR/SSIM

LapSRN[20]
813K − 149.6G

PSNR/SSIM

MemNet[37]
677K − 2662.4G

PSNR/SSIM

NLRN[26]
350K − 32.5

PSNR/SSIM

SRFBN S[23]
483K − 119G

PSNR/SSIM

CARN[1]
1592K − 90.9G

PSNR/SSIM

CBPN [48]
1197K − 97.9G

PSNR/SSIM

OISR RK2 s[12]
1540K − 114.2G

PSNR/SSIM

MAFFSRN-L[32]
830K − 38.6G

PSNR/SSIM

LatticeNet[29]
777K-43.6G
PSNR/SSIM

MPRNet [Ours]
538K-31.3G
PSNR/SSIM

Set5
×2
×3
×4

37.53/0.9587
33.66/0.9213
31.35/0.8838

37.52/0.9590
——–

31.54/0.8850

37.87/0.9597
34.09/0.9248
31.74/0.8893

38.00/0.9603
34.27/0.9266
31.92/0.8916

37.78/0.9597
34.20/0.9255
31.98/0.9594

37.76/0.9590
34.29/0.9255
32.13/0.8937

37.90/0.9590
——–

32.21/0.8944

37.90/0.9600
34.39/0.9273
32.21/0.8903

38.07/0.9607
34.45/0.9277
32.20/0.8953

38.15/0.9610
34.53/0.9281
32.30/0.8962

38.08/0.9608
34.57/0.9285
32.38/0.8969

Set14
×2
×3
×4

33.03/09124
29.77/0.8314
28.01/0.7674

33.08/0.9130
——–

28.19/0.7720

33.28/0.9142
30.00/0.8350
28.26/0.7723

33.46/0.9159
30.16/0.8374
28.36/0.7745

33.35/0.9156
30.10/0.8350
28.45/0.7779

33.52/0.9166
30.29/0.8407
28.60/0.7806

33.60/0.9171
——–

28.63/0.7813

33.58/0.9172
30.33/0.8420
28.63/0.7822

33.59/0.9177
30.40/0.8432
28.62/0.7822

33.78/0.9193
30.39/0.8424
28.68/0.7830

33.79/0.9196
30.42/0.8441
28.69/0.7841

B100
×2
×3
×4

31.90/0.8960
28.82/0.7976
27.29/0.7251

31.80/0.8950
——–

27.32/0.7280

32.08/0.8978
38.96/0.8001
27.40/0.7281

32.19/0.8992
29.06/0.8026
27.48/0.7306

32.00/0.8970
28.96/0.8010
27.44/0.7313

32.09/0.8978
29.06/0.8434
27.58/0.7349

32.17/0.8989
——–

27.58/0.7356

32.18/0.8996
29.10/0.8083
27.58/0.7364

32.23/0.9005
29.13/0.8061
27.59/0.7370

32.25/0.9005
29.15/0.8059
27.62/0.7367

32.25/0.9004
29.17/0.8073
27.63/0.7385

Urban100
×2
×3
×4

30.76/0.9140
27.14/0.8279
25.18/0.7524

30.41/0.9100
——–

25.21/0.7560

31.31/0.9195
27.56/0.8376
25.50/0.7630

31.81/0.9249
27.93/0.8453
25.79/0.7729

31.41/0.9207
27.66/0.8415
25.71/0.7719

31.92/0.9256
28.06/0.8493
26.07/0.7837

32.14/0.9279
——–

26.14/0.7869

32.21/0.8950
28.03/0.8544
26.14/0.7874

32.38/0.9308
28.26/0.8552
26.16/0.7887

32.43/0.9302
28.33/0.8538
26.25/0.7873

32.52/0.9317
28.42/0.8578
26.31/0.7921

Table 2: Comparison with SOTA methods on challenging datasets (”BD” and ”DN”) for scale factor ×3. Red is the Best and Blue is the
second best performance.

Dataset
Methods

Degradation
Bicubic

PSNR/SSIM
SPMSR[33]
PSNR/SSIM

SRCNN[7]
PSNR/SSIM

FSRCNN[8]
PSNR/SSIM

VDSR[18]
PSNR/SSIM

IRCNN G[45]
PSNR/SSIM

IRCNN C[45]
PSNR/SSIM

SRMD(NF)[39]
PSNR/SSIM

RDN[47]
PSNR/SSIM

MPRNet [Ours]
PSNR/SSIM

Set5
BD
DN

28.34/0.8161
24.14/0.5445

32.21/0.9001
—-

31.75/0.8899
27.04/0.7638

26.58/0.8224
24.28/0.7124

33.29/0.9139
27.42/0.7372

33.38/0.9182
24.85/0.7205

29.55/0.8246
26.18/0.7430

34.09/0.9242
27.74/0.8026

34.57/0.9280
28.46/0.8151

34.57/0.9278
28.54/0.8175

Set14
BD
DN

26.12/0.7106
23.14/0.4828

28.89/0.8105
—-

28.64/0.7997
25.56/0.6592

24.86/0.7246
23.25/0.5956

29.58/0.8259
25.60/0.6706

29.73/0.8292
23.84/0.6091

27.33/0.7135
24.68/0.6300

30.11/0.8364
26.13/0.6974

30.53/0.8447
26.60/0.7101

30.47/0.8427
26.25/0.6954

B100
BD
DN

26.02/0.6733
22.94/0.4461

28.13/0.7740
—-

27.33/0.7500
25.45/0.6198

24.15/0.6728
23.95/0.5695

28.61/0.7900
25.22/0.6271

28.65/0.7922
23.89/0.5688

26.46/0.6572
24.52/0.5850

28.98/0.8009
25.64/0.6495

29.23/0.8079
25.93/0.6573

29.19/0.8062
25.95/0.6616

Urban100
BD
DN

23.20/0.6661
21.63/0.4701

25.84/0.7856
—-

25.19/0.7591
23.59/0.6580

22.95/0.6836
21.74/0.5724

26.68/0.8019
23.33/0.6579

26.77/0.8154
21.96/0.6018

24.89/0.7172
22.63/0.6205

27.50/0.8370
24.28/0.7092

28.46/0.8581
24.92/0.7362

28.31/0.8538
25.00/0.7406

4.2. Comparison with state-of-the-art Methods

4.2.1 Results with BI Degradation

Table 1 presents comparisons between the proposed MPR-
Net and 10 most recent lightweight SOTA models on BI
degradation model for scale factor [×2, ×3, and ×4] to
verify the effectiveness of our MPRNet (we exclude some
lightweight methods [7, 8, 19, 35, 36, 41] from table 1 since
their results are worse than MemNet). Table 1 also contains
the number of parameters and operations to show the model
complexity. In almost all the cases, our MPRNet achieves
superior results among all the aforementioned approaches.
MPRNet performs especially well on Urban100. This is

HR Bicubic VDSR MemNet

img012 from Urban100 LapSRN CARN SRFBN-S MPRNet(Ours)

HR Bicubic VDSR MemNet

img092 from Urban100 LapSRN CARN SRFBN-S MPRNet(Ours)

Figure 4: Qualitative results on BI degradation dataset with scale
factor ×4.

particularly because the Urban100 includes rich structured
contents and our model can consistently accumulate these
hierarchical features to form of more representative features
and well-focused on spatial context information. This char-
acteristic can be confirmed by our MPRNet SSIM scores,
which focuses on the visible structures in the image. In Fig.
4 a couple of qualitative results on scale factor ×4 are de-
picted. The proposed MPRNet can generally yield to more
precise details. In both images in Fig. 4, the texture direc-
tion of the reconstructed images from all compared methods
is completely wrong. However, results from the proposed
MPRNet makes full use of the abstract features and recover
images accurately similar to ground truth texture.

HR Bicubic SRCNN FSRCNN

img063 from B100 VDSR IRCNN C SRMD MPRNet(Ours)

HR Bicubic SRCNN FSRCNN

img021 from B100 VDSR IRCNN G SRMDNF MPRNet(Ours)

Figure 5: Qualitative results on DN and BD degradation datasets
with a scale factor ×3.



4.2.2 Results with BD and DN Degradation Models

In Table 2, the performance of MPRNet on BD and DN
benchmark datasets, together with SOTA methods, are pre-
sented. Due to degradation mismatch, SRCNN, FSRCNN,
and VDSR for both BD and DN have been re-trained.
As can be appreciated, MPRNet achieves remarkable re-
sults over all the lightweight SOTA models on challeng-
ing benchmark datasets. RDN [47] also listed as a high-
capability model to show the superior performance of MPR-
Net compared to very costly model in the BD and DN
datasets. RDN performs sightly better in some BD datasets
but not in DN datasets. Obviously, this result was expected
since RDN is very expensive compared to low-cost MPR-
Net (it is almost ×44 more costly). Fig 5 depicts some
visual results on both challenging BD and DN benchmark
datasets. As can be appreciated the MPRNet with the help
of the proposed TFAM performs better in comparison with
SOTA methods in terms of producing more convincing re-
sults by cleaning off noise and blurred regions from SR im-
ages, which results in a sharper SR image with fine details.1

4.3. Ablation Study

To further investigate the performance of the proposed
model, a deep analysis on the Two-Fold Attention Module,
the Adaptive Residual Block, and Residual Learning Con-
nections is performed via an extensive ablation study.

Two-Fold Attention Module. In this section, Deep in-
vestigation of the impacts of our proposed TFAM on SOTA
SR models are provided. The performance of image SR has
improved greatly with the application of Attention Mech-
anism (AM). Table 3 shows the performance of applying
recent AMs including Channel and spatial attention resid-
ual (CSAR) [16], Enhanced Spatial Attention (ESA)[27],
and our Two-Fold Attention Module (TFAM) on EDSR,
RCAN, and MSRN. For a fair comparison, all the mod-
els were re-trained with their default setting and AMs are
added to the end of their Block, and replaced in the same
place as RCAN’s Channel Attention placed. As can be seen,
by using the aforementioned attention module, the perfor-
mance of the baseline models are increased that shows the
importance of AM in SR tasks. By applying the CSAR to
the mentioned approaches, PSNR improves in EDSR and
MSRN but does not show enough improvement in RCAN.
In contrast, ESA is enhanced version of CASR, which com-
bine both the channel and spatial information, improves
all the baseline models. However ESA cannot completely
boost the power of the networks due to lack of highlighting
informative feature in spatial information. For this propose,
we introduce Two-Fold Attention Module, which consider
both channel and spatial information and maximize the per-

1Additional analyses (such as Inference time, Memory consumption,
and etc.) and more visual results can be found in supplementary material.

formance of the networks. TFAM extracts the channel and
spatial statistic among channels and spatial axis to further
enhance the discriminative ability of the network. As a re-
sults, TFAM shows better performance than all the afore-
mentioned ones and boosted the baseline SOTA.

Furthermore, Table 4 contains the study on impact of re-
cent AMs on our MPRNet. Namely, SE[15], CBAM [42],
CSAR [16], ESA [27], and TFAM. We apply all the afore-
mentioned AM to our ARB blocks and Feature Module,
and provide the performance. The proposed MPRNet with
CBAM, could not achieve better results than baseline or SE
due to losing channel information and applying the Max-
pooling in CA unit which shows harm the performance.
Unlike, MPRNet with CASR achieves better results than
CBAM and SE because of considering both channel and
spatial information but not better than ESA. However, our
TFAM performs better among all the AMs by calculating
the first order statistics on CA unit and applying Avg- and
Max-pooling operations along the channel axis, which is ef-
fective in highlighting informative regions and extracts the
most important features like edges.

Table 3 also shows the efficiency of our ARB with con-
junction of TFAM when it is applied to other SOTA mod-
els. As indicated, ARB with TFAM together can improve
the PSNR of SOTA models with a large margin.

Adaptive Residual Block. Table 5 presents the im-
pact of different Residual Blocks and the proposed Adap-
tive Residual Block (ARB) on our MPRNet. In this
work, three different structures of residual blocks from
SOTA models are considered to compare with our pro-
posed ARB, namely, MobileNet-BottleneckBlock, EDSR-
ResBlock, RCAN-ResidualChannelBlock. All the mod-
els were trained with the same settings. As can be seen,
MobileNet-BottleneckBlock could not perform well in SR
tasks due to difficulty of extracting high-frequency infor-
mation and gradient confusion. EDSR-ResBlock is the
ResNet without batch normalization layer, but still could
not achieve good results due to the lack of extracting rich
feature maps and eliminating noises from LR feature space.
RCAN-ResidualChannelBlock performs better than afore-
mentioned ResBlock due to channel attention in their struc-
ture. However RCAN-ResidualChannelBlock did not show
better results than our proposed ARB since our ARB can
learn more expressive spatial information, have access to
high-dimensional information and also with the help of
TFAM can maximize the whole performance of block.

Additionally, effect of each learning pathways of ARB
on the performance is provided. ARBB , ARBBA and
ARBR are Adaptive Residual Block with bottleneck path;
ARB with bottleneck and adaptive paths; ARB with bot-
tleneck and residual path respectively. As shown in Table
5, MPRNet with all learning pathways (ARB) achieves the
best performance among all the mentioned ResBlock and



Table 3: Effect of Attention Mechanisms and proposed Adaptive Residual Block on SOTA models. The best PSNR (dB) are highlighted.

Name EDSR RCAN MSRN
Baseline Attention Modules ResBlock Baseline Attention Modules ResBlock Baseline Attention Modules ResBlock

Channel and spatial attention residual[16] 3 3 3
Enhanced Spatial Attention[27] 3 3 3
Two-Fold Attention Module[Ours] 3 3 3 3 3 3
Adaptive Residual Block[Ours] 3 3 3
PSNR on Set5 (×4)
PSNR on Urban100 (×4)

32.46
26.64

32.48
26.66

32.51
26.69

32.54
26.71

32.65
26.79

32.63
26.82

32.64
39.84

32.67
26.86

32.70
26.89

32.78
26.96

32.25
26.22

32.27
26.25

32.30
26.29

32.34
26.32

32.39
26.41

Table 4: Impact of different Attention Mechanisms on MPRNet.
Dataset Baseline SE CBAM CSAR ESA TFAM
Set14 (×4) 28.57 28.59 28.54 28.61 28.64 28.67
Urban100 (×4) 26.19 26.21 26.18 26.23 26.25 26.29

Table 5: Effect of different configs of Residual Block and each
learning pathway of the Adaptive Residual Block

Configs MobileNet
BnBlock

EDSR
ResBlock

RCAN
ResBlock ARBB ARBBA ARBR ARB

BNp 3 3 3 3
Adpp 3 3
Resp 3 3

B100 (×4) 27.24 27.44 27.52 27.46 27.58 27.55 27.63
Urban100 (×4) 25.79 25.96 26.08 26.05 26.15 26.11 26.31

Table 6: Study on combining different Residual Connections.
Options Baseline 1st 2nd 3rd 4th 5th

Residual Learning Connections
LRC 7 3 3 3
GRC 7 3 3 3
LRSC 7 3 3

PSNR on Set5 (×3)
PSNR on Urban100 (×3)

34.42
28.30

34.40
28.29

34.47
28.35

34.45
28.33

34.52
28.38

34.57
28.42

combinations of different ARB learning pathways. This is
caused by allowing the main parts of network to focus on
more informative components of the LR features and force
the network to focus more on abstract features, which are
important in SR tasks. Furthermore, the proposed pathways
helps the model to converge better and performs better than
all the baseline models. In a nutshell, information propa-
gates locally via residual path, adaptively extract the infor-
mative features via adaptive path, and learn more meaning-
ful spatial information by Bottleneck path. By doing so,
information is transmitted by multiple pathways inside of
ARB and main parts of network access to more expressive
and richer feature maps, resulting in superior PSNR.

Effect of Residual Learning Connections. Table 6
shows the extensive study of the impact of Residual Learn-
ing Connections on our design of MPRNet, i.e. Local
Residual Connection (LRC), Global Residual Connection
(GRC), and Long Range Skip Connection (LRSC). In this
work, residual connections except LRSC comprise concate-
nation followed by a 1×1 Conv layer. As we can see, MPR-
Net without any residual connection performs relatively low
(i.e. baseline). However, MPRNet with only GRC in Resid-
ual Module shows better performance than baseline since
GRC transports the information from mid- to high-layers
and helps the model to better leverage multi-level represen-
tations by collecting all information before the next module.

On the contrary, MPRNet with only LRC inside Resid-

ual Concatenation Block could not perform better than the
MPRNet with GRC. This behavior was expected as men-
tioned in [11] that 1×1 Conv layer on the residual con-
nection can confuse optimization and prevent information
propagation due to multiplicative manipulations. However,
MPRNet can show better performance by using both con-
nections (4th col.). This is due to GRC eases the informa-
tion propagation issue that LRC suffers from.

To end this, LRSC also added to the MPRNet to carry
the shallow information to high-level layers. Thus, informa-
tion is transferred by multiple connections, which mitigates
the vanishing gradient problem and network has access to
multi-level representation. As a results, MPRNet with all
connections (5th col.) can performs greatly better.

Model Complexity Analysis. Figure 1 indicates the
comparison regard to the model size and PSNR with 15 re-
cent state-of-the-art SR models. Our MPRNet achieves the
best performance among all the lightweight SR approaches
with much fewer parameters and achieves better or compa-
rable results when compared with computationally expan-
sive models. This shows that our MPRNet is well-balanced
in terms of model size and reconstruction results.

5. Conclusions
This paper proposes a novel lightweight network (MPR-

Net) that achieves the best performance against all existing
lightweight SOTA approaches. The main idea behind of
this work is to design an advanced lightweight network to
deliver almost similar results to heavy computational net-
works. A novel Residual Module is proposed to let abun-
dant low-level information to be avoided through multiple
connections. In addition, an efficient Adaptive Residual
Block is proposed to allows MPRNet achieves more rich
feature-maps through the multi-path learning. Furthermore,
to maximize the power of the network a Two-Fold Attention
Module is proposed, which refine the extracted information
along channel and spatial axes to further enhance the dis-
criminative ability of the network. Extensive evaluations
and comparisons are provided.
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