toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Edgar Riba; D. Mishkin; Daniel Ponsa; E. Rublee; G. Bradski edit   pdf
url  doi
openurl 
  Title Kornia: an Open Source Differentiable Computer Vision Library for PyTorch Type Conference Article
  Year 2020 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages (up)  
  Keywords  
  Abstract  
  Address Aspen; Colorado; USA; March 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes MSIAU; 600.122; 600.130 Approved no  
  Call Number Admin @ si @ RMP2020 Serial 3291  
Permanent link to this record
 

 
Author Corina Krauter; Ursula Reiter; Albrecht Schmidt; Marc Masana; Rudolf Stollberger; Michael Fuchsjager; Gert Reiter edit   pdf
url  openurl
  Title Objective extraction of the temporal evolution of the mitral valve vortex ring from 4D flow MRI Type Conference Article
  Year 2019 Publication 27th Annual Meeting & Exhibition of the International Society for Magnetic Resonance in Medicine Abbreviated Journal  
  Volume Issue Pages (up)  
  Keywords  
  Abstract The mitral valve vortex ring is a promising flow structure for analysis of diastolic function, however, methods for objective extraction of its formation to dissolution are lacking. We present a novel algorithm for objective extraction of the temporal evolution of the mitral valve vortex ring from magnetic resonance 4D flow data and validated the method against visual analysis. The algorithm successfully extracted mitral valve vortex rings during both early- and late-diastolic filling and agreed substantially with visual assessment. Early-diastolic mitral valve vortex ring properties differed between healthy subjects and patients with ischemic heart disease.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ISMRM  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ KRS2019 Serial 3300  
Permanent link to this record
 

 
Author Debora Gil; Antonio Esteban Lansaque; Agnes Borras; Carles Sanchez edit   pdf
url  openurl
  Title Enhancing virtual bronchoscopy with intra-operative data using a multi-objective GAN Type Journal Article
  Year 2019 Publication International Journal of Computer Assisted Radiology and Surgery Abbreviated Journal IJCAR  
  Volume 7 Issue 1 Pages (up)  
  Keywords  
  Abstract This manuscript has been withdrawn by bioRxiv due to upload of an incorrect version of the manuscript by the authors. Therefore, this manuscript should not be cited as reference for this project.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ GEB2019 Serial 3307  
Permanent link to this record
 

 
Author Zhengying Liu; Isabelle Guyon; Julio C. S. Jacques Junior; Meysam Madadi; Sergio Escalera; Adrien Pavao; Hugo Jair Escalante; Wei-Wei Tu; Zhen Xu; Sebastien Treguer edit   pdf
url  openurl
  Title AutoCV Challenge Design and Baseline Results Type Conference Article
  Year 2019 Publication La Conference sur l’Apprentissage Automatique Abbreviated Journal  
  Volume Issue Pages (up)  
  Keywords  
  Abstract We present the design and beta tests of a new machine learning challenge called AutoCV (for Automated Computer Vision), which is the first event in a series of challenges we are planning on the theme of Automated Deep Learning. We target applications for which Deep Learning methods have had great success in the past few years, with the aim of pushing the state of the art in fully automated methods to design the architecture of neural networks and train them without any human intervention. The tasks are restricted to multi-label image classification problems, from domains including medical, areal, people, object, and handwriting imaging. Thus the type of images will vary a lot in scales, textures, and structure. Raw data are provided (no features extracted), but all datasets are formatted in a uniform tensor manner (although images may have fixed or variable sizes within a dataset). The participants's code will be blind tested on a challenge platform in a controlled manner, with restrictions on training and test time and memory limitations. The challenge is part of the official selection of IJCNN 2019.  
  Address Toulouse; Francia; July 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ LGJ2019 Serial 3323  
Permanent link to this record
 

 
Author Daniel Sanchez; Meysam Madadi; Marc Oliu; Sergio Escalera edit   pdf
url  doi
openurl 
  Title Multi-task human analysis in still images: 2D/3D pose, depth map, and multi-part segmentation Type Conference Article
  Year 2019 Publication 14th IEEE International Conference on Automatic Face and Gesture Recognition Abbreviated Journal  
  Volume Issue Pages (up)  
  Keywords  
  Abstract While many individual tasks in the domain of human analysis have recently received an accuracy boost from deep learning approaches, multi-task learning has mostly been ignored due to a lack of data. New synthetic datasets are being released, filling this gap with synthetic generated data. In this work, we analyze four related human analysis tasks in still images in a multi-task scenario by leveraging such datasets. Specifically, we study the correlation of 2D/3D pose estimation, body part segmentation and full-body depth estimation. These tasks are learned via the well-known Stacked Hourglass module such that each of the task-specific streams shares information with the others. The main goal is to analyze how training together these four related tasks can benefit each individual task for a better generalization. Results on the newly released SURREAL dataset show that all four tasks benefit from the multi-task approach, but with different combinations of tasks: while combining all four tasks improves 2D pose estimation the most, 2D pose improves neither 3D pose nor full-body depth estimation. On the other hand 2D parts segmentation can benefit from 2D pose but not from 3D pose. In all cases, as expected, the maximum improvement is achieved on those human body parts that show more variability in terms of spatial distribution, appearance and shape, e.g. wrists and ankles.  
  Address Lille; France; May 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FG  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ SMO2019 Serial 3326  
Permanent link to this record
 

 
Author Sergio Escalera; Ralf Herbrich edit  url
doi  isbn
openurl 
  Title The NeurIPS’18 Competition: From Machine Learning to Intelligent Conversations Type Book Whole
  Year 2020 Publication The Springer Series on Challenges in Machine Learning Abbreviated Journal  
  Volume Issue Pages (up)  
  Keywords  
  Abstract This volume presents the results of the Neural Information Processing Systems Competition track at the 2018 NeurIPS conference. The competition follows the same format as the 2017 competition track for NIPS. Out of 21 submitted proposals, eight competition proposals were selected, spanning the area of Robotics, Health, Computer Vision, Natural Language Processing, Systems and Physics. Competitions have become an integral part of advancing state-of-the-art in artificial intelligence (AI). They exhibit one important difference to benchmarks: Competitions test a system end-to-end rather than evaluating only a single component; they assess the practicability of an algorithmic solution in addition to assessing feasibility.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Sergio Escalera; Ralf Hebrick  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2520-1328 ISBN 978-3-030-29134-1 Medium  
  Area Expedition Conference  
  Notes HuPBA; no menciona Approved no  
  Call Number Admin @ si @ HeE2020 Serial 3328  
Permanent link to this record
 

 
Author Ajian Liu; Jun Wan; Sergio Escalera; Hugo Jair Escalante; Zichang Tan; Qi Yuan; Kai Wang; Chi Lin; Guodong Guo; Isabelle Guyon; Stan Z. Li edit   pdf
openurl 
  Title Multi-Modal Face Anti-Spoofing Attack Detection Challenge at CVPR2019 Type Conference Article
  Year 2019 Publication IEEE International Conference on Computer Vision and Pattern Recognition-Workshop Abbreviated Journal  
  Volume Issue Pages (up)  
  Keywords  
  Abstract Anti-spoofing attack detection is critical to guarantee the security of face-based authentication and facial analysis systems. Recently, a multi-modal face anti-spoofing dataset, CASIA-SURF, has been released with the goal of boosting research in this important topic. CASIA-SURF is the largest public data set for facial anti-spoofing attack detection in terms of both, diversity and modalities: it comprises 1,000 subjects and 21,000 video samples. We organized a challenge around this novel resource to boost research in the subject. The Chalearn LAP multi-modal face anti-spoofing attack detection challenge attracted more than 300 teams for the development phase with a total of 13 teams qualifying for the final round. This paper presents an overview of the challenge, including its design, evaluation protocol and a summary of results. We analyze the top ranked solutions and draw conclusions derived from the competition. In addition we outline future work directions.  
  Address California; June 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes HuPBA; no proj Approved no  
  Call Number Admin @ si @ LWE2019 Serial 3329  
Permanent link to this record
 

 
Author Andres Mafla; Sounak Dey; Ali Furkan Biten; Lluis Gomez; Dimosthenis Karatzas edit   pdf
url  doi
openurl 
  Title Fine-grained Image Classification and Retrieval by Combining Visual and Locally Pooled Textual Features Type Conference Article
  Year 2020 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages (up)  
  Keywords  
  Abstract Text contained in an image carries high-level semantics that can be exploited to achieve richer image understanding. In particular, the mere presence of text provides strong guiding content that should be employed to tackle a diversity of computer vision tasks such as image retrieval, fine-grained classification, and visual question answering. In this paper, we address the problem of fine-grained classification and image retrieval by leveraging textual information along with visual cues to comprehend the existing intrinsic relation between the two modalities. The novelty of the proposed model consists of the usage of a PHOC descriptor to construct a bag of textual words along with a Fisher Vector Encoding that captures the morphology of text. This approach provides a stronger multimodal representation for this task and as our experiments demonstrate, it achieves state-of-the-art results on two different tasks, fine-grained classification and image retrieval.  
  Address Aspen; Colorado; USA; March 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ MDB2020 Serial 3334  
Permanent link to this record
 

 
Author Arnau Baro; Alicia Fornes; Carles Badal edit   pdf
openurl 
  Title Handwritten Historical Music Recognition by Sequence-to-Sequence with Attention Mechanism Type Conference Article
  Year 2020 Publication 17th International Conference on Frontiers in Handwriting Recognition Abbreviated Journal  
  Volume Issue Pages (up)  
  Keywords  
  Abstract Despite decades of research in Optical Music Recognition (OMR), the recognition of old handwritten music scores remains a challenge because of the variabilities in the handwriting styles, paper degradation, lack of standard notation, etc. Therefore, the research in OMR systems adapted to the particularities of old manuscripts is crucial to accelerate the conversion of music scores existing in archives into digital libraries, fostering the dissemination and preservation of our music heritage. In this paper we explore the adaptation of sequence-to-sequence models with attention mechanism (used in translation and handwritten text recognition) and the generation of specific synthetic data for recognizing old music scores. The experimental validation demonstrates that our approach is promising, especially when compared with long short-term memory neural networks.  
  Address Virtual ICFHR; September 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICFHR  
  Notes DAG; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ BFB2020 Serial 3448  
Permanent link to this record
 

 
Author Alicia Fornes; Josep Llados; Joana Maria Pujadas-Mora edit  url
isbn  openurl
  Title Browsing of the Social Network of the Past: Information Extraction from Population Manuscript Images Type Book Chapter
  Year 2020 Publication Handwritten Historical Document Analysis, Recognition, and Retrieval – State of the Art and Future Trends Abbreviated Journal  
  Volume Issue Pages (up)  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher World Scientific Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-981-120-323-7 Medium  
  Area Expedition Conference  
  Notes DAG; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ FLP2020 Serial 3350  
Permanent link to this record
 

 
Author Debora Gil; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell edit   pdf
url  doi
openurl 
  Title Segmentation of Distal Airways using Structural Analysis Type Journal Article
  Year 2019 Publication PloS one Abbreviated Journal Plos  
  Volume 14 Issue 12 Pages (up)  
  Keywords  
  Abstract Segmentation of airways in Computed Tomography (CT) scans is a must for accurate support of diagnosis and intervention of many pulmonary disorders. In particular, lung cancer diagnosis would benefit from segmentations reaching most distal airways. We present a method that combines descriptors of bronchi local appearance and graph global structural analysis to fine-tune thresholds on the descriptors adapted for each bronchial level. We have compared our method to the top performers of the EXACT09 challenge and to a commercial software for biopsy planning evaluated in an own-collected data-base of high resolution CT scans acquired under different breathing conditions. Results on EXACT09 data show that our method provides a high leakage reduction with minimum loss in airway detection. Results on our data-base show the reliability across varying breathing conditions and a competitive performance for biopsy planning compared to a commercial solution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ GSB2019 Serial 3357  
Permanent link to this record
 

 
Author Debora Gil; Antoni Rosell edit  openurl
  Title Advances in Artificial Intelligence – How Lung Cancer CT Screening Will Progress? Type Abstract
  Year 2019 Publication World Lung Cancer Conference Abbreviated Journal  
  Volume Issue Pages (up)  
  Keywords  
  Abstract Invited speaker  
  Address Barcelona; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IASLC WCLC  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ GiR2019 Serial 3361  
Permanent link to this record
 

 
Author David Berga; Xavier Otazu edit  openurl
  Title Computations of inhibition of return mechanisms by modulating V1 dynamics Type Conference Article
  Year 2019 Publication 28th Annual Computational Neuroscience Meeting Abbreviated Journal  
  Volume Issue Pages (up)  
  Keywords  
  Abstract In this study we present a unifed model of the visual cortex for predicting visual attention using real image scenes. Feedforward mechanisms from RGC and LGN have been functionally modeled using wavelet filters at distinct orientations and scales for each chromatic pathway (Magno-, Parvo-, Konio-cellular) and polarity (ON-/OFF-center), by processing image components in the CIE Lab space. In V1, we process cortical interactions with an excitatory-inhibitory network of fring rate neurons, initially proposed by (Li, 1999), later extended by (Penacchio et al. 2013). Firing rates from model’s output have been used as predictors of neuronal activity to be projected in a map in superior colliculus (with WTA-like computations), determining locations of visual fxations. These locations will be considered as already visited areas for future saccades, therefore we integrated a spatiotemporal function of inhibition of return mechanisms (where LIP/FEF is responsible) to feed to the model with spatial memory for next saccades. Foveation mechanisms have been simulated with a cortical magnifcation function, which distort spatial viewing properties for each fxation. Results show lower prediction errors than with respect no IoR cases (Fig. 1), and it is functionally consistent with human psychophysical measurements. Our model follows a biologically-constrained architecture, previously shown to reproduce visual saliency (Berga & Otazu, 2018), visual discomfort (Penacchio et al. 2016), brightness (Penacchio et al. 2013) and chromatic induction (Cerda & Otazu, 2016).  
  Address Barcelona; July 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CNS  
  Notes NEUROBIT; no menciona Approved no  
  Call Number Admin @ si @ BeO2019a Serial 3373  
Permanent link to this record
 

 
Author David Berga; Xavier Otazu edit  openurl
  Title Computational modelingof visual attention: What do we know from physiology and psychophysics? Type Conference Article
  Year 2019 Publication 8th Iberian Conference on Perception Abbreviated Journal  
  Volume Issue Pages (up)  
  Keywords  
  Abstract Latest computer vision architectures use a chain of feedforward computations, mainly optimizing artificial neural networks for very specific tasks. Although their impressive performance (i.e. in saliency) using real image datasets, these models do not follow several biological principles of the human visual system (e.g. feedback and horizontal connections in cortex) and are unable to predict several visual tasks simultaneously. In this study we present biologically plausible computations from the early stages of the human visual system (i.e. retina and lateral geniculate nucleus) and lateral connections in V1. Despite the simplicity of these processes and without any type of training or optimization, simulations of firing-rate dynamics of V1 are able to predict bottom-up visual attention at distinct contexts (shown previously as well to predict visual discomfort, brightness and chromatic induction). We also show functional top-down selection mechanisms as feedback inhibition projections (i.e. prefrontal cortex for search/task-based attention and parietal area for inhibition of return). Distinct saliency model predictions are tested with eye tracking datasets in free-viewing and visual search tasks, using real images and synthetically-generated patterns. Results on predicting saliency and scanpaths show that artificial models do not outperform biologically-inspired ones (specifically for datasets that lack of common endogenous biases found in eye tracking experimentation), as well as, do not correctly predict contrast sensitivities in pop-out stimulus patterns. This work remarks the importance of considering biological principles of the visual system for building models that reproduce this (and any other) visual effects.  
  Address San Lorenzo El Escorial; July 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CIP  
  Notes NEUROBIT; no menciona Approved no  
  Call Number Admin @ si @ BeO2019b Serial 3374  
Permanent link to this record
 

 
Author David Berga; Xose R. Fernandez-Vidal; Xavier Otazu; Victor Leboran; Xose M. Pardo edit  openurl
  Title Measuring bottom-up visual attention in eye tracking experimentation with synthetic images Type Conference Article
  Year 2019 Publication 8th Iberian Conference on Perception Abbreviated Journal  
  Volume Issue Pages (up)  
  Keywords  
  Abstract A benchmark of saliency models performance with a synthetic image dataset is provided. Model performance is evaluated through saliency metrics as well as the influence of model inspiration and consistency with human psychophysics. SID4VAM is composed of 230 synthetic images, with known salient regions. Images were generated with 15 distinct types of low-level features (e.g. orientation, brightness, color, size...) with a target-distractor pop-out type of synthetic patterns. We have used Free-Viewing and Visual Search task instructions and 7 feature contrasts for each feature category. Our study reveals that state-of-the-art Deep Learning saliency models do not perform well with synthetic pattern images, instead, models with Spectral/Fourier inspiration outperform others in saliency metrics and are more consistent with human psychophysical experimentation. This study proposes a new way to evaluate saliency models in the forthcoming literature, accounting for synthetic images with uniquely low-level feature contexts, distinct from previous eye tracking image datasets.  
  Address San Lorenzo El Escorial; July 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CIP  
  Notes NEUROBIT; 600.128 Approved no  
  Call Number Admin @ si @ BFO2019c Serial 3375  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: