toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ariel Amato; Felipe Lumbreras; Angel Sappa edit   pdf
openurl 
  Title A General-purpose Crowdsourcing Platform for Mobile Devices Type Conference Article
  Year 2014 Publication 9th International Conference on Computer Vision Theory and Applications Abbreviated Journal  
  Volume 3 Issue Pages 211-215  
  Keywords Crowdsourcing Platform; Mobile Crowdsourcing  
  Abstract This paper presents details of a general purpose micro-task on-demand platform based on the crowdsourcing philosophy. This platform was specifically developed for mobile devices in order to exploit the strengths of such devices; namely: i) massivity, ii) ubiquity and iii) embedded sensors. The combined use of mobile platforms and the crowdsourcing model allows to tackle from the simplest to the most complex tasks. Users experience is the highlighted feature of this platform (this fact is extended to both task-proposer and tasksolver). Proper tools according with a specific task are provided to a task-solver in order to perform his/her job in a simpler, faster and appealing way. Moreover, a task can be easily submitted by just selecting predefined templates, which cover a wide range of possible applications. Examples of its usage in computer vision and computer games are provided illustrating the potentiality of the platform.  
  Address Lisboa; Portugal; January 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (down)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference VISAPP  
  Notes ISE; ADAS; 600.054; 600.055; 600.076; 600.078 Approved no  
  Call Number Admin @ si @ ALS2014 Serial 2478  
Permanent link to this record
 

 
Author Christophe Rigaud; Dimosthenis Karatzas; Jean-Christophe Burie; Jean-Marc Ogier edit  doi
isbn  openurl
  Title Color descriptor for content-based drawing retrieval Type Conference Article
  Year 2014 Publication 11th IAPR International Workshop on Document Analysis and Systems Abbreviated Journal  
  Volume Issue Pages 267 - 271  
  Keywords  
  Abstract Human detection in computer vision field is an active field of research. Extending this to human-like drawings such as the main characters in comic book stories is not trivial. Comics analysis is a very recent field of research at the intersection of graphics, texts, objects and people recognition. The detection of the main comic characters is an essential step towards a fully automatic comic book understanding. This paper presents a color-based approach for comics character retrieval using content-based drawing retrieval and color palette.  
  Address Tours; Francia; April 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (down)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4799-3243-6 Medium  
  Area Expedition Conference DAS  
  Notes DAG; 600.056; 600.077 Approved no  
  Call Number Admin @ si @ RKB2014 Serial 2479  
Permanent link to this record
 

 
Author Clement Guerin; Christophe Rigaud; Karell Bertet; Jean-Christophe Burie; Arnaud Revel ; Jean-Marc Ogier edit  openurl
  Title Réduction de l’espace de recherche pour les personnages de bandes dessinées Type Conference Article
  Year 2014 Publication 19th National Congress Reconnaissance de Formes et l'Intelligence Artificielle Abbreviated Journal  
  Volume Issue Pages  
  Keywords contextual search; document analysis; comics characters  
  Abstract Les bandes dessinées représentent un patrimoine culturel important dans de nombreux pays et leur numérisation massive offre la possibilité d'effectuer des recherches dans le contenu des images. À ce jour, ce sont principalement les structures des pages et leurs contenus textuels qui ont été étudiés, peu de travaux portent sur le contenu graphique. Nous proposons de nous appuyer sur des éléments déjà étudiés tels que la position des cases et des bulles, pour réduire l'espace de recherche et localiser les personnages en fonction de la queue des bulles. L'évaluation de nos différentes contributions à partir de la base eBDtheque montre un taux de détection des queues de bulle de 81.2%, de localisation des personnages allant jusqu'à 85% et un gain d'espace de recherche de plus de 50%.  
  Address Rouen; Francia; July 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (down)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference RFIA  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ GRB2014 Serial 2480  
Permanent link to this record
 

 
Author Christophe Rigaud; Clement Guerin edit  openurl
  Title Localisation contextuelle des personnages de bandes dessinées Type Conference Article
  Year 2014 Publication Colloque International Francophone sur l'Écrit et le Document Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Les auteurs proposent une méthode de localisation des personnages dans des cases de bandes dessinées en s'appuyant sur les caractéristiques des bulles de dialogue. L'évaluation montre un taux de localisation des personnages allant jusqu'à 65%.  
  Address Nancy; Francia; March 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (down)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CIFED  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ RiG2014 Serial 2481  
Permanent link to this record
 

 
Author Jon Almazan; Albert Gordo; Alicia Fornes; Ernest Valveny edit  doi
openurl 
  Title Word Spotting and Recognition with Embedded Attributes Type Journal Article
  Year 2014 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 36 Issue 12 Pages 2552 - 2566  
  Keywords  
  Abstract This article addresses the problems of word spotting and word recognition on images. In word spotting, the goal is to find all instances of a query word in a dataset of images. In recognition, the goal is to recognize the content of the word image, usually aided by a dictionary or lexicon. We describe an approach in which both word images and text strings are embedded in a common vectorial subspace. This is achieved by a combination of label embedding and attributes learning, and a common subspace regression. In this subspace, images and strings that represent the same word are close together, allowing one to cast recognition and retrieval tasks as a nearest neighbor problem. Contrary to most other existing methods, our representation has a fixed length, is low dimensional, and is very fast to compute and, especially, to compare. We test our approach on four public datasets of both handwritten documents and natural images showing results comparable or better than the state-of-the-art on spotting and recognition tasks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (down)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.056; 600.045; 600.061; 602.006; 600.077 Approved no  
  Call Number Admin @ si @ AGF2014a Serial 2483  
Permanent link to this record
 

 
Author Jon Almazan; Albert Gordo; Alicia Fornes; Ernest Valveny edit  doi
openurl 
  Title Segmentation-free Word Spotting with Exemplar SVMs Type Journal Article
  Year 2014 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 47 Issue 12 Pages 3967–3978  
  Keywords Word spotting; Segmentation-free; Unsupervised learning; Reranking; Query expansion; Compression  
  Abstract In this paper we propose an unsupervised segmentation-free method for word spotting in document images. Documents are represented with a grid of HOG descriptors, and a sliding-window approach is used to locate the document regions that are most similar to the query. We use the Exemplar SVM framework to produce a better representation of the query in an unsupervised way. Then, we use a more discriminative representation based on Fisher Vector to rerank the best regions retrieved, and the most promising ones are used to expand the Exemplar SVM training set and improve the query representation. Finally, the document descriptors are precomputed and compressed with Product Quantization. This offers two advantages: first, a large number of documents can be kept in RAM memory at the same time. Second, the sliding window becomes significantly faster since distances between quantized HOG descriptors can be precomputed. Our results significantly outperform other segmentation-free methods in the literature, both in accuracy and in speed and memory usage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (down)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.045; 600.056; 600.061; 602.006; 600.077 Approved no  
  Call Number Admin @ si @ AGF2014b Serial 2485  
Permanent link to this record
 

 
Author Carlo Gatta; Adriana Romero; Joost Van de Weijer edit   pdf
doi  openurl
  Title Unrolling loopy top-down semantic feedback in convolutional deep networks Type Conference Article
  Year 2014 Publication Workshop on Deep Vision: Deep Learning for Computer Vision Abbreviated Journal  
  Volume Issue Pages 498-505  
  Keywords  
  Abstract In this paper, we propose a novel way to perform top-down semantic feedback in convolutional deep networks for efficient and accurate image parsing. We also show how to add global appearance/semantic features, which have shown to improve image parsing performance in state-of-the-art methods, and was not present in previous convolutional approaches. The proposed method is characterised by an efficient training and a sufficiently fast testing. We use the well known SIFTflow dataset to numerically show the advantages provided by our contributions, and to compare with state-of-the-art image parsing convolutional based approaches.  
  Address Columbus; Ohio; June 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (down)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes LAMP; MILAB; 601.160; 600.079 Approved no  
  Call Number Admin @ si @ GRW2014 Serial 2490  
Permanent link to this record
 

 
Author Dimosthenis Karatzas; Sergi Robles; Lluis Gomez edit   pdf
doi  isbn
openurl 
  Title An on-line platform for ground truthing and performance evaluation of text extraction systems Type Conference Article
  Year 2014 Publication 11th IAPR International Workshop on Document Analysis and Systems Abbreviated Journal  
  Volume Issue Pages 242 - 246  
  Keywords  
  Abstract This paper presents a set of on-line software tools for creating ground truth and calculating performance evaluation metrics for text extraction tasks such as localization, segmentation and recognition. The platform supports the definition of comprehensive ground truth information at different text representation levels while it offers centralised management and quality control of the ground truthing effort. It implements a range of state of the art performance evaluation algorithms and offers functionality for the definition of evaluation scenarios, on-line calculation of various performance metrics and visualisation of the results. The
presented platform, which comprises the backbone of the ICDAR 2011 (challenge 1) and 2013 (challenges 1 and 2) Robust Reading competitions, is now made available for public use.
 
  Address Tours; Francia; April 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (down)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4799-3243-6 Medium  
  Area Expedition Conference DAS  
  Notes DAG; 600.056; 600.077 Approved no  
  Call Number Admin @ si @ KRG2014 Serial 2491  
Permanent link to this record
 

 
Author Lluis Gomez; Dimosthenis Karatzas edit   pdf
doi  openurl
  Title MSER-based Real-Time Text Detection and Tracking Type Conference Article
  Year 2014 Publication 22nd International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 3110 - 3115  
  Keywords  
  Abstract We present a hybrid algorithm for detection and tracking of text in natural scenes that goes beyond the fulldetection approaches in terms of time performance optimization.
A state-of-the-art scene text detection module based on Maximally Stable Extremal Regions (MSER) is used to detect text asynchronously, while on a separate thread detected text objects are tracked by MSER propagation. The cooperation of these two modules yields real time video processing at high frame rates even on low-resource devices.
 
  Address Stockholm; August 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (down)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 600.056; 601.158; 601.197; 600.077 Approved no  
  Call Number Admin @ si @ GoK2014a Serial 2492  
Permanent link to this record
 

 
Author Alejandro Tabas; Emili Balaguer-Ballester; Laura Igual edit   pdf
doi  isbn
openurl 
  Title Spatial Discriminant ICA for RS-fMRI characterisation Type Conference Article
  Year 2014 Publication 4th International Workshop on Pattern Recognition in Neuroimaging Abbreviated Journal  
  Volume Issue Pages 1-4  
  Keywords  
  Abstract Resting-State fMRI (RS-fMRI) is a brain imaging technique useful for exploring functional connectivity. A major point of interest in RS-fMRI analysis is to isolate connectivity patterns characterising disorders such as for instance ADHD. Such characterisation is usually performed in two steps: first, all connectivity patterns in the data are extracted by means of Independent Component Analysis (ICA); second, standard statistical tests are performed over the extracted patterns to find differences between control and clinical groups. In this work we introduce a novel, single-step, approach for this problem termed Spatial Discriminant ICA. The algorithm can efficiently isolate networks of functional connectivity characterising a clinical group by combining ICA and a new variant of the Fisher’s Linear Discriminant also introduced in this work. As the characterisation is carried out in a single step, it potentially provides for a richer characterisation of inter-class differences. The algorithm is tested using synthetic and real fMRI data, showing promising results in both experiments.  
  Address Tübingen; June 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (down)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4799-4150-6 Medium  
  Area Expedition Conference PRNI  
  Notes OR;MILAB Approved no  
  Call Number Admin @ si @ TBI2014 Serial 2493  
Permanent link to this record
 

 
Author Oualid M. Benkarim; Petia Radeva; Laura Igual edit   pdf
doi  isbn
openurl 
  Title Label Consistent Multiclass Discriminative Dictionary Learning for MRI Segmentation Type Conference Article
  Year 2014 Publication 8th Conference on Articulated Motion and Deformable Objects Abbreviated Journal  
  Volume 8563 Issue Pages 138-147  
  Keywords MRI segmentation; sparse representation; discriminative dic- tionary learning; multiclass classi cation  
  Abstract The automatic segmentation of multiple subcortical structures in brain Magnetic Resonance Images (MRI) still remains a challenging task. In this paper, we address this problem using sparse representation and discriminative dictionary learning, which have shown promising results in compression, image denoising and recently in MRI segmentation. Particularly, we use multiclass dictionaries learned from a set of brain atlases to simultaneously segment multiple subcortical structures.
We also impose dictionary atoms to be specialized in one given class using label consistent K-SVD, which can alleviate the bias produced by unbalanced libraries, present when dealing with small structures. The proposed method is compared with other state of the art approaches for the segmentation of the Basal Ganglia of 35 subjects of a public dataset.
The promising results of the segmentation method show the eciency of the multiclass discriminative dictionary learning algorithms in MRI segmentation problems.
 
  Address Palma de Mallorca; July 2014  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor (down)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-319-08848-8 Medium  
  Area Expedition Conference AMDO  
  Notes MILAB; OR Approved no  
  Call Number Admin @ si @ BRI2014 Serial 2494  
Permanent link to this record
 

 
Author Patricia Marquez; H. Kause; A. Fuster; Aura Hernandez-Sabate; L. Florack; Debora Gil; Hans van Assen edit   pdf
doi  isbn
openurl 
  Title Factors Affecting Optical Flow Performance in Tagging Magnetic Resonance Imaging Type Conference Article
  Year 2014 Publication 17th International Conference on Medical Image Computing and Computer Assisted Intervention Abbreviated Journal  
  Volume 8896 Issue Pages 231-238  
  Keywords Optical flow; Performance Evaluation; Synthetic Database; ANOVA; Tagging Magnetic Resonance Imaging  
  Abstract Changes in cardiac deformation patterns are correlated with cardiac pathologies. Deformation can be extracted from tagging Magnetic Resonance Imaging (tMRI) using Optical Flow (OF) techniques. For applications of OF in a clinical setting it is important to assess to what extent the performance of a particular OF method is stable across di erent clinical acquisition artifacts. This paper presents a statistical validation framework, based on ANOVA, to assess the motion and appearance factors that have the largest in uence on OF accuracy drop.
In order to validate this framework, we created a database of simulated tMRI data including the most common artifacts of MRI and test three di erent OF methods, including HARP.
 
  Address Boston; USA; September 2014  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor (down)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-319-14677-5 Medium  
  Area Expedition Conference STACOM  
  Notes IAM; ADAS; 600.060; 601.145; 600.076; 600.075 Approved no  
  Call Number Admin @ si @ MKF2014 Serial 2495  
Permanent link to this record
 

 
Author Hongxing Gao; Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados edit   pdf
doi  openurl
  Title Fast Structural Matching for Document Image Retrieval through Spatial Databases Type Conference Article
  Year 2014 Publication Document Recognition and Retrieval XXI Abbreviated Journal  
  Volume 9021 Issue Pages  
  Keywords Document image retrieval; distance transform; MSER; spatial database  
  Abstract The structure of document images plays a signi cant role in document analysis thus considerable e orts have been made towards extracting and understanding document structure, usually in the form of layout analysis approaches. In this paper, we rst employ Distance Transform based MSER (DTMSER) to eciently extract stable document structural elements in terms of a dendrogram of key-regions. Then a fast structural matching method is proposed to query the structure of document (dendrogram) based on a spatial database which facilitates the formulation of advanced spatial queries. The experiments demonstrate a signi cant improvement in a document retrieval scenario when compared to the use of typical Bag of Words (BoW) and pyramidal BoW descriptors.  
  Address Amsterdam; September 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (down)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SPIE-DRR  
  Notes DAG; 600.056; 600.061; 600.077 Approved no  
  Call Number Admin @ si @ GRK2014a Serial 2496  
Permanent link to this record
 

 
Author Hongxing Gao; Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados edit   pdf
doi  openurl
  Title Embedding Document Structure to Bag-of-Words through Pair-wise Stable Key-regions Type Conference Article
  Year 2014 Publication 22nd International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 2903 - 2908  
  Keywords  
  Abstract Since the document structure carries valuable discriminative information, plenty of efforts have been made for extracting and understanding document structure among which layout analysis approaches are the most commonly used. In this paper, Distance Transform based MSER (DTMSER) is employed to efficiently extract the document structure as a dendrogram of key-regions which roughly correspond to structural elements such as characters, words and paragraphs. Inspired by the Bag
of Words (BoW) framework, we propose an efficient method for structural document matching by representing the document image as a histogram of key-region pairs encoding structural relationships.
Applied to the scenario of document image retrieval, experimental results demonstrate a remarkable improvement when comparing the proposed method with typical BoW and pyramidal BoW methods.
 
  Address Stockholm; Sweden; August 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (down)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 600.056; 600.061; 600.077 Approved no  
  Call Number Admin @ si @ GRK2014b Serial 2497  
Permanent link to this record
 

 
Author Victor Ponce; Sergio Escalera; Marc Perez; Oriol Janes; Xavier Baro edit  doi
openurl 
  Title Non-Verbal Communication Analysis in Victim-Offender Mediations Type Journal Article
  Year 2015 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 67 Issue 1 Pages 19-27  
  Keywords Victim–Offender Mediation; Multi-modal human behavior analysis; Face and gesture recognition; Social signal processing; Computer vision; Machine learning  
  Abstract We present a non-invasive ambient intelligence framework for the semi-automatic analysis of non-verbal communication applied to the restorative justice field. We propose the use of computer vision and social signal processing technologies in real scenarios of Victim–Offender Mediations, applying feature extraction techniques to multi-modal audio-RGB-depth data. We compute a set of behavioral indicators that define communicative cues from the fields of psychology and observational methodology. We test our methodology on data captured in real Victim–Offender Mediation sessions in Catalonia. We define the ground truth based on expert opinions when annotating the observed social responses. Using different state of the art binary classification approaches, our system achieves recognition accuracies of 86% when predicting satisfaction, and 79% when predicting both agreement and receptivity. Applying a regression strategy, we obtain a mean deviation for the predictions between 0.5 and 0.7 in the range [1–5] for the computed social signals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (down)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MV Approved no  
  Call Number Admin @ si @ PEP2015 Serial 2583  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: