toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Olivier Penacchio; Laura Dempere-Marco; Xavier Otazu edit   pdf
openurl 
  Title Switching off brightness induction through induction-reversed images Type Abstract
  Year 2012 Publication Perception Abbreviated Journal PER  
  Volume 41 Issue Pages 208  
  Keywords  
  Abstract Brightness induction is the modulation of the perceived intensity of an
area by the luminance of surrounding areas. Although V1 is traditionally regarded as
an area mostly responsive to retinal information, neurophysiological evidence
suggests that it may explicitly represent brightness information. In this work, we
investigate possible neural mechanisms underlying brightness induction. To this end,
we consider the model by Z Li (1999 Computation and Neural Systems10187-212)
which is constrained by neurophysiological data and focuses on the part of V1
responsible for contextual influences. This model, which has proven to account for
phenomena such as contour detection and preattentive segmentation, shares with
brightness induction the relevant effect of contextual influences. Importantly, the
input to our network model derives from a complete multiscale and multiorientation
wavelet decomposition, which makes it possible to recover an image reflecting the
perceived luminance and successfully accounts for well known psychophysical
effects for both static and dynamic contexts. By further considering inverse problem
techniques we define induction-reversed images: given a target image, we build an
image whose perceived luminance matches the actual luminance of the original
stimulus, thus effectively canceling out brightness induction effects. We suggest that
induction-reversed images may help remove undesired perceptual effects and can
find potential applications in fields such as radiological image interpretation
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ PDO2012a Serial 2180  
Permanent link to this record
 

 
Author Olivier Penacchio; Laura Dempere-Marco; Xavier Otazu edit   pdf
openurl 
  Title A Neurodynamical Model Of Brightness Induction In V1 Following Static And Dynamic Contextual Influences Type Abstract
  Year 2012 Publication 8th Federation of European Neurosciences Abbreviated Journal  
  Volume 6 Issue Pages 63-64  
  Keywords  
  Abstract Brightness induction is the modulation of the perceived intensity of an area by the luminance of surrounding areas. Although striate cortex is traditionally regarded as an area mostly responsive to ensory (i.e. retinal) information,
neurophysiological evidence suggests that perceived brightness information mightbe explicitly represented in V1.
Such evidence has been observed both in anesthetised cats where neuronal response modulations have been found to follow luminance changes outside the receptive felds and in human fMRI measurements. In this work, possible neural mechanisms that ofer a plausible explanation for such phenomenon are investigated. To this end, we consider the model proposed by Z.Li (Li, Network:Comput. Neural Syst., 10 (1999)) which is based on neurophysiological evidence and focuses on the part of V1 responsible for contextual infuences, i.e. layer 2-3 pyramidal cells, interneurons, and horizontal intracortical connections. This model has reproduced other phenomena such as contour detection and preattentive segmentation, which share with brightness induction the relevant efect of contextual infuences. We have extended the original model such that the input to the network is obtained from a complete multiscale and multiorientation wavelet decomposition, thereby allowing the recovery of an image refecting the perceived intensity. The proposed model successfully accounts for well known psychophysical efects for static contexts (among them: the White's and modifed White's efects, the Todorovic, Chevreul, achromatic ring patterns, and grating induction efects) and also for brigthness induction in dynamic contexts defned by modulating the luminance of surrounding areas (e.g. the brightness of a static central area is perceived to vary in antiphase to the sinusoidal luminance changes of its surroundings). This work thus suggests that intra-cortical interactions in V1 could partially explain perceptual brightness induction efects and reveals how a common general architecture may account for several different fundamental processes emerging early in the visual processing pathway.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FENS  
  Notes CIC Approved no  
  Call Number Admin @ si @ PDO2012b Serial 2181  
Permanent link to this record
 

 
Author Jordi Roca; C. Alejandro Parraga; Maria Vanrell edit   pdf
url  openurl
  Title Predicting categorical colour perception in successive colour constancy Type Abstract
  Year 2012 Publication Perception Abbreviated Journal PER  
  Volume 41 Issue Pages 138  
  Keywords  
  Abstract Colour constancy is a perceptual mechanism that seeks to keep the colour of objects relatively stable under an illumination shift. Experiments haveshown that its effects depend on the number of colours present in the scene. We
studied categorical colour changes under different adaptation states, in particular, whether the colour categories seen under a chromatically neutral illuminant are the same after a shift in the chromaticity of the illumination. To do this, we developed the chromatic setting paradigm (2011 Journal of Vision11 349), which is as an extension of achromatic setting to colour categories. The paradigm exploits the ability of subjects to reliably reproduce the most representative examples of each category, adjusting multiple test patches embedded in a coloured Mondrian. Our experiments were run on a CRT monitor (inside a dark room) under various simulated illuminants and restricting the number of colours of the Mondrian background to three, thus weakening the adaptation effect. Our results show a change in the colour categories present before (under neutral illumination) and after adaptation (under coloured illuminants) with a tendency for adapted colours to be less saturated than before adaptation. This behaviour was predicted by a simple
affine matrix model, adjusted to the chromatic setting results.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-0066 ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ RPV2012 Serial 2188  
Permanent link to this record
 

 
Author Jordi Roca; Maria Vanrell; C. Alejandro Parraga edit  url
isbn  openurl
  Title What is constant in colour constancy? Type Conference Article
  Year 2012 Publication 6th European Conference on Colour in Graphics, Imaging and Vision Abbreviated Journal  
  Volume Issue Pages 337-343  
  Keywords  
  Abstract Color constancy refers to the ability of the human visual system to stabilize
the color appearance of surfaces under an illuminant change. In this work we studied how the interrelations among nine colors are perceived under illuminant changes, particularly whether they remain stable across 10 different conditions (5 illuminants and 2 backgrounds). To do so we have used a paradigm that measures several colors under an immersive state of adaptation. From our measures we defined a perceptual structure descriptor that is up to 87% stable over all conditions, suggesting that color category features could be used to predict color constancy. This is in agreement with previous results on the stability of border categories [1,2] and with computational color constancy
algorithms [3] for estimating the scene illuminant.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 9781622767014 Medium  
  Area Expedition Conference CGIV  
  Notes CIC Approved no  
  Call Number RVP2012 Serial 2189  
Permanent link to this record
 

 
Author David Augusto Rojas edit  openurl
  Title Colouring Local Feature Detection for Matching Type Report
  Year 2009 Publication CVC Technical Report Abbreviated Journal  
  Volume 133 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Computer Vision Center Thesis Master's thesis  
  Publisher Place of Publication Bellaterra, Barcelona Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ Roj2009 Serial 2392  
Permanent link to this record
 

 
Author Olivier Penacchio edit  openurl
  Title Relative Density of L, M, S photoreceptors in the Human Retina Type Report
  Year 2009 Publication CVC Technical Report Abbreviated Journal  
  Volume 135 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Computer Vision Center Thesis Master's thesis  
  Publisher Place of Publication Bellaterra, Barcelona Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ Pen2009 Serial 2394  
Permanent link to this record
 

 
Author Xavier Boix edit  openurl
  Title Learning Conditional Random Fields for Stereo Type Report
  Year 2009 Publication CVC Technical Report Abbreviated Journal  
  Volume 136 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Computer Vision Center Thesis Master's thesis  
  Publisher Place of Publication Bellaterra, Barcelona Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ Boi2009 Serial 2395  
Permanent link to this record
 

 
Author Shida Beigpour edit  openurl
  Title Physics-based Reflectance Estimation Applied to Recoloring Type Report
  Year 2009 Publication CVC Technical Report Abbreviated Journal  
  Volume 137 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Computer Vision Center Thesis Master's thesis  
  Publisher Place of Publication Bellaterra, Barcelona Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ Bei2009 Serial 2396  
Permanent link to this record
 

 
Author Jose Carlos Rubio edit  openurl
  Title Graph matching based on graphical models with application to vehicle tracking and classification at night Type Report
  Year 2009 Publication CVC Technical Report Abbreviated Journal  
  Volume 144 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Computer Vision Center Thesis Master's thesis  
  Publisher Place of Publication Bellaterra, Barcelona Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ Rub2009 Serial 2398  
Permanent link to this record
 

 
Author Ivet Rafegas edit  openurl
  Title Exploring Low-Level Vision Models. Case Study: Saliency Prediction Type Report
  Year 2013 Publication CVC Technical Report Abbreviated Journal  
  Volume 175 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ Raf2013 Serial 2409  
Permanent link to this record
 

 
Author A. Ruiz; Joost Van de Weijer; Xavier Binefa edit   pdf
url  openurl
  Title Regularized Multi-Concept MIL for weakly-supervised facial behavior categorization Type Conference Article
  Year 2014 Publication 25th British Machine Vision Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract We address the problem of estimating high-level semantic labels for videos of recorded people by means of analysing their facial expressions. This problem, to which we refer as facial behavior categorization, is a weakly-supervised learning problem where we do not have access to frame-by-frame facial gesture annotations but only weak-labels at the video level are available. Therefore, the goal is to learn a set of discriminative expressions and how they determine the video weak-labels. Facial behavior categorization can be posed as a Multi-Instance-Learning (MIL) problem and we propose a novel MIL method called Regularized Multi-Concept MIL to solve it. In contrast to previous approaches applied in facial behavior analysis, RMC-MIL follows a Multi-Concept assumption which allows different facial expressions (concepts) to contribute differently to the video-label. Moreover, to handle with the high-dimensional nature of facial-descriptors, RMC-MIL uses a discriminative approach to model the concepts and structured sparsity regularization to discard non-informative features. RMC-MIL is posed as a convex-constrained optimization problem where all the parameters are jointly learned using the Projected-Quasi-Newton method. In our experiments, we use two public data-sets to show the advantages of the Regularized Multi-Concept approach and its improvement compared to existing MIL methods. RMC-MIL outperforms state-of-the-art results in the UNBC data-set for pain detection.  
  Address Nottingham; UK; September 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference BMVC  
  Notes LAMP; CIC; 600.074; 600.079 Approved no  
  Call Number Admin @ si @ RWB2014 Serial 2508  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Joost Van de Weijer; Andrew Bagdanov; Michael Felsberg edit   pdf
doi  openurl
  Title Scale Coding Bag-of-Words for Action Recognition Type Conference Article
  Year 2014 Publication 22nd International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 1514-1519  
  Keywords  
  Abstract Recognizing human actions in still images is a challenging problem in computer vision due to significant amount of scale, illumination and pose variation. Given the bounding box of a person both at training and test time, the task is to classify the action associated with each bounding box in an image.
Most state-of-the-art methods use the bag-of-words paradigm for action recognition. The bag-of-words framework employing a dense multi-scale grid sampling strategy is the de facto standard for feature detection. This results in a scale invariant image representation where all the features at multiple-scales are binned in a single histogram. We argue that such a scale invariant
strategy is sub-optimal since it ignores the multi-scale information
available with each bounding box of a person.
This paper investigates alternative approaches to scale coding for action recognition in still images. We encode multi-scale information explicitly in three different histograms for small, medium and large scale visual-words. Our first approach exploits multi-scale information with respect to the image size. In our second approach, we encode multi-scale information relative to the size of the bounding box of a person instance. In each approach, the multi-scale histograms are then concatenated into a single representation for action classification. We validate our approaches on the Willow dataset which contains seven action categories: interacting with computer, photography, playing music,
riding bike, riding horse, running and walking. Our results clearly suggest that the proposed scale coding approaches outperform the conventional scale invariant technique. Moreover, we show that our approach obtains promising results compared to more complex state-of-the-art methods.
 
  Address Stockholm; August 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes CIC; LAMP; 601.240; 600.074; 600.079 Approved no  
  Call Number Admin @ si @ KWB2014 Serial 2450  
Permanent link to this record
 

 
Author Shida Beigpour; Christian Riess; Joost Van de Weijer; Elli Angelopoulou edit   pdf
doi  openurl
  Title Multi-Illuminant Estimation with Conditional Random Fields Type Journal Article
  Year 2014 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 23 Issue 1 Pages 83-95  
  Keywords color constancy; CRF; multi-illuminant  
  Abstract Most existing color constancy algorithms assume uniform illumination. However, in real-world scenes, this is not often the case. Thus, we propose a novel framework for estimating the colors of multiple illuminants and their spatial distribution in the scene. We formulate this problem as an energy minimization task within a conditional random field over a set of local illuminant estimates. In order to quantitatively evaluate the proposed method, we created a novel data set of two-dominant-illuminant images comprised of laboratory, indoor, and outdoor scenes. Unlike prior work, our database includes accurate pixel-wise ground truth illuminant information. The performance of our method is evaluated on multiple data sets. Experimental results show that our framework clearly outperforms single illuminant estimators as well as a recently proposed multi-illuminant estimation approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes CIC; LAMP; 600.074; 600.079 Approved no  
  Call Number Admin @ si @ BRW2014 Serial 2451  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Joost Van de Weijer; Muhammad Anwer Rao; Michael Felsberg; Carlo Gatta edit   pdf
doi  openurl
  Title Semantic Pyramids for Gender and Action Recognition Type Journal Article
  Year 2014 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 23 Issue 8 Pages 3633-3645  
  Keywords  
  Abstract Person description is a challenging problem in computer vision. We investigated two major aspects of person description: 1) gender and 2) action recognition in still images. Most state-of-the-art approaches for gender and action recognition rely on the description of a single body part, such as face or full-body. However, relying on a single body part is suboptimal due to significant variations in scale, viewpoint, and pose in real-world images. This paper proposes a semantic pyramid approach for pose normalization. Our approach is fully automatic and based on combining information from full-body, upper-body, and face regions for gender and action recognition in still images. The proposed approach does not require any annotations for upper-body and face of a person. Instead, we rely on pretrained state-of-the-art upper-body and face detectors to automatically extract semantic information of a person. Given multiple bounding boxes from each body part detector, we then propose a simple method to select the best candidate bounding box, which is used for feature extraction. Finally, the extracted features from the full-body, upper-body, and face regions are combined into a single representation for classification. To validate the proposed approach for gender recognition, experiments are performed on three large data sets namely: 1) human attribute; 2) head-shoulder; and 3) proxemics. For action recognition, we perform experiments on four data sets most used for benchmarking action recognition in still images: 1) Sports; 2) Willow; 3) PASCAL VOC 2010; and 4) Stanford-40. Our experiments clearly demonstrate that the proposed approach, despite its simplicity, outperforms state-of-the-art methods for gender and action recognition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes CIC; LAMP; 601.160; 600.074; 600.079;MILAB Approved no  
  Call Number Admin @ si @ KWR2014 Serial 2507  
Permanent link to this record
 

 
Author Marc Serra; Olivier Penacchio; Robert Benavente; Maria Vanrell; Dimitris Samaras edit   pdf
doi  openurl
  Title The Photometry of Intrinsic Images Type Conference Article
  Year 2014 Publication 27th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 1494-1501  
  Keywords  
  Abstract Intrinsic characterization of scenes is often the best way to overcome the illumination variability artifacts that complicate most computer vision problems, from 3D reconstruction to object or material recognition. This paper examines the deficiency of existing intrinsic image models to accurately account for the effects of illuminant color and sensor characteristics in the estimation of intrinsic images and presents a generic framework which incorporates insights from color constancy research to the intrinsic image decomposition problem. The proposed mathematical formulation includes information about the color of the illuminant and the effects of the camera sensors, both of which modify the observed color of the reflectance of the objects in the scene during the acquisition process. By modeling these effects, we get a “truly intrinsic” reflectance image, which we call absolute reflectance, which is invariant to changes of illuminant or camera sensors. This model allows us to represent a wide range of intrinsic image decompositions depending on the specific assumptions on the geometric properties of the scene configuration and the spectral properties of the light source and the acquisition system, thus unifying previous models in a single general framework. We demonstrate that even partial information about sensors improves significantly the estimated reflectance images, thus making our method applicable for a wide range of sensors. We validate our general intrinsic image framework experimentally with both synthetic data and natural images.  
  Address Columbus; Ohio; USA; June 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes CIC; 600.052; 600.051; 600.074 Approved no  
  Call Number Admin @ si @ SPB2014 Serial 2506  
Permanent link to this record
 

 
Author M. Danelljan; Fahad Shahbaz Khan; Michael Felsberg; Joost Van de Weijer edit   pdf
doi  openurl
  Title Adaptive color attributes for real-time visual tracking Type Conference Article
  Year 2014 Publication 27th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 1090 - 1097  
  Keywords  
  Abstract Visual tracking is a challenging problem in computer vision. Most state-of-the-art visual trackers either rely on luminance information or use simple color representations for image description. Contrary to visual tracking, for object
recognition and detection, sophisticated color features when combined with luminance have shown to provide excellent performance. Due to the complexity of the tracking problem, the desired color feature should be computationally
efficient, and possess a certain amount of photometric invariance while maintaining high discriminative power.
This paper investigates the contribution of color in a tracking-by-detection framework. Our results suggest that color attributes provides superior performance for visual tracking. We further propose an adaptive low-dimensional
variant of color attributes. Both quantitative and attributebased evaluations are performed on 41 challenging benchmark color sequences. The proposed approach improves the baseline intensity-based tracker by 24% in median distance precision. Furthermore, we show that our approach outperforms
state-of-the-art tracking methods while running at more than 100 frames per second.
 
  Address Nottingham; UK; September 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes CIC; LAMP; 600.074; 600.079 Approved no  
  Call Number Admin @ si @ DKF2014 Serial 2509  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Shida Beigpour; Joost Van de Weijer; Michael Felsberg edit  doi
openurl 
  Title Painting-91: A Large Scale Database for Computational Painting Categorization Type Journal Article
  Year 2014 Publication Machine Vision and Applications Abbreviated Journal MVAP  
  Volume 25 Issue 6 Pages 1385-1397  
  Keywords  
  Abstract Computer analysis of visual art, especially paintings, is an interesting cross-disciplinary research domain. Most of the research in the analysis of paintings involve medium to small range datasets with own specific settings. Interestingly, significant progress has been made in the field of object and scene recognition lately. A key factor in this success is the introduction and availability of benchmark datasets for evaluation. Surprisingly, such a benchmark setup is still missing in the area of computational painting categorization. In this work, we propose a novel large scale dataset of digital paintings. The dataset consists of paintings from 91 different painters. We further show three applications of our dataset namely: artist categorization, style classification and saliency detection. We investigate how local and global features popular in image classification perform for the tasks of artist and style categorization. For both categorization tasks, our experimental results suggest that combining multiple features significantly improves the final performance. We show that state-of-the-art computer vision methods can correctly classify 50 % of unseen paintings to its painter in a large dataset and correctly attribute its artistic style in over 60 % of the cases. Additionally, we explore the task of saliency detection on paintings and show experimental findings using state-of-the-art saliency estimation algorithms.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0932-8092 ISBN Medium  
  Area Expedition Conference  
  Notes CIC; LAMP; 600.074; 600.079 Approved no  
  Call Number Admin @ si @ KBW2014 Serial 2510  
Permanent link to this record
 

 
Author C. Alejandro Parraga; Jordi Roca; Dimosthenis Karatzas; Sophie Wuerger edit   pdf
url  doi
openurl 
  Title Limitations of visual gamma corrections in LCD displays Type Journal Article
  Year 2014 Publication Displays Abbreviated Journal Dis  
  Volume 35 Issue 5 Pages 227–239  
  Keywords Display calibration; Psychophysics; Perceptual; Visual gamma correction; Luminance matching; Observer-based calibration  
  Abstract A method for estimating the non-linear gamma transfer function of liquid–crystal displays (LCDs) without the need of a photometric measurement device was described by Xiao et al. (2011) [1]. It relies on observer’s judgments of visual luminance by presenting eight half-tone patterns with luminances from 1/9 to 8/9 of the maximum value of each colour channel. These half-tone patterns were distributed over the screen both over the vertical and horizontal viewing axes. We conducted a series of photometric and psychophysical measurements (consisting in the simultaneous presentation of half-tone patterns in each trial) to evaluate whether the angular dependency of the light generated by three different LCD technologies would bias the results of these gamma transfer function estimations. Our results show that there are significant differences between the gamma transfer functions measured and produced by observers at different viewing angles. We suggest appropriate modifications to the Xiao et al. paradigm to counterbalance these artefacts which also have the advantage of shortening the amount of time spent in collecting the psychophysical measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC; DAG; 600.052; 600.077; 600.074 Approved no  
  Call Number Admin @ si @ PRK2014 Serial 2511  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: