toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Giuseppe Pezzano; Vicent Ribas Ripoll; Petia Radeva edit  url
openurl 
  Title CoLe-CNN: Context-learning convolutional neural network with adaptive loss function for lung nodule segmentation Type Journal Article
  Year 2021 Publication Computer Methods and Programs in Biomedicine Abbreviated Journal CMPB  
  Volume 198 Issue Pages 105792  
  Keywords  
  Abstract Background and objective:An accurate segmentation of lung nodules in computed tomography images is a crucial step for the physical characterization of the tumour. Being often completely manually accomplished, nodule segmentation turns to be a tedious and time-consuming procedure and this represents a high obstacle in clinical practice. In this paper, we propose a novel Convolutional Neural Network for nodule segmentation that combines a light and efficient architecture with innovative loss function and segmentation strategy. Methods:In contrast to most of the standard end-to-end architectures for nodule segmentation, our network learns the context of the nodules by producing two masks representing all the background and secondary-important elements in the Computed Tomography scan. The nodule is detected by subtracting the context from the original scan image. Additionally, we introduce an asymmetric loss function that automatically compensates for potential errors in the nodule annotations. We trained and tested our Neural Network on the public LIDC-IDRI database, compared it with the state of the art and run a pseudo-Turing test between four radiologists and the network. Results:The results proved that the behaviour of the algorithm is very near to the human performance and its segmentation masks are almost indistinguishable from the ones made by the radiologists. Our method clearly outperforms the state of the art on CT nodule segmentation in terms of F1 score and IoU of and respectively. Conclusions: The main structure of the network ensures all the properties of the UNet architecture, while the Multi Convolutional Layers give a more accurate pattern recognition. The newly adopted solutions also increase the details on the border of the nodule, even under the noisiest conditions. This method can be applied now for single CT slice nodule segmentation and it represents a starting point for the future development of a fully automatic 3D segmentation software.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ PRR2021 Serial 3530  
Permanent link to this record
 

 
Author Soumick Chatterjee; Fatima Saad; Chompunuch Sarasaen; Suhita Ghosh; Rupali Khatun; Petia Radeva; Georg Rose; Sebastian Stober; Oliver Speck; Andreas Nürnberger edit   pdf
openurl 
  Title Exploration of Interpretability Techniques for Deep COVID-19 Classification using Chest X-ray Images Type Miscellaneous
  Year 2020 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract CoRR abs/2006.02570
The outbreak of COVID-19 has shocked the entire world with its fairly rapid spread and has challenged different sectors. One of the most effective ways to limit its spread is the early and accurate diagnosis of infected patients. Medical imaging such as X-ray and Computed Tomography (CT) combined with the potential of Artificial Intelligence (AI) plays an essential role in supporting the medical staff in the diagnosis process. Thereby, the use of five different deep learning models (ResNet18, ResNet34, InceptionV3, InceptionResNetV2, and DenseNet161) and their Ensemble have been used in this paper, to classify COVID-19, pneumoniæ and healthy subjects using Chest X-Ray. Multi-label classification was performed to predict multiple pathologies for each patient, if present. Foremost, the interpretability of each of the networks was thoroughly studied using techniques like occlusion, saliency, input X gradient, guided backpropagation, integrated gradients, and DeepLIFT. The mean Micro-F1 score of the models for COVID-19 classifications ranges from 0.66 to 0.875, and is 0.89 for the Ensemble of the network models. The qualitative results depicted the ResNets to be the most interpretable model.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes MILAB Approved no  
  Call Number Admin @ si @ CSS2020 Serial 3534  
Permanent link to this record
 

 
Author Estefania Talavera; Andreea Glavan; Alina Matei; Petia Radeva edit   pdf
openurl 
  Title Eating Habits Discovery in Egocentric Photo-streams Type Miscellaneous
  Year 2020 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract CoRR abs/2009.07646
Eating habits are learned throughout the early stages of our lives. However, it is not easy to be aware of how our food-related routine affects our healthy living. In this work, we address the unsupervised discovery of nutritional habits from egocentric photo-streams. We build a food-related behavioural pattern discovery model, which discloses nutritional routines from the activities performed throughout the days. To do so, we rely on Dynamic-Time-Warping for the evaluation of similarity among the collected days. Within this framework, we present a simple, but robust and fast novel classification pipeline that outperforms the state-of-the-art on food-related image classification with a weighted accuracy and F-score of 70% and 63%, respectively. Later, we identify days composed of nutritional activities that do not describe the habits of the person as anomalies in the daily life of the user with the Isolation Forest method. Furthermore, we show an application for the identification of food-related scenes when the camera wearer eats in isolation. Results have shown the good performance of the proposed model and its relevance to visualize the nutritional habits of individuals.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes MILAB Approved no  
  Call Number Admin @ si @ TGM2020 Serial 3536  
Permanent link to this record
 

 
Author Daniela Rato; Miguel Oliveira; Vitor Santos; Manuel Gomes; Angel Sappa edit  doi
openurl 
  Title A sensor-to-pattern calibration framework for multi-modal industrial collaborative cells Type Journal Article
  Year 2022 Publication Journal of Manufacturing Systems Abbreviated Journal JMANUFSYST  
  Volume 64 Issue Pages 497-507  
  Keywords Calibration; Collaborative cell; Multi-modal; Multi-sensor  
  Abstract Collaborative robotic industrial cells are workspaces where robots collaborate with human operators. In this context, safety is paramount, and for that a complete perception of the space where the collaborative robot is inserted is necessary. To ensure this, collaborative cells are equipped with a large set of sensors of multiple modalities, covering the entire work volume. However, the fusion of information from all these sensors requires an accurate extrinsic calibration. The calibration of such complex systems is challenging, due to the number of sensors and modalities, and also due to the small overlapping fields of view between the sensors, which are positioned to capture different viewpoints of the cell. This paper proposes a sensor to pattern methodology that can calibrate a complex system such as a collaborative cell in a single optimization procedure. Our methodology can tackle RGB and Depth cameras, as well as LiDARs. Results show that our methodology is able to accurately calibrate a collaborative cell containing three RGB cameras, a depth camera and three 3D LiDARs.  
  Address  
  Corporate Author Thesis  
  Publisher Science Direct Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes MSIAU; MACO Approved no  
  Call Number Admin @ si @ ROS2022 Serial 3750  
Permanent link to this record
 

 
Author Xavier Soria; Gonzalo Pomboza-Junez; Angel Sappa edit  doi
openurl 
  Title LDC: Lightweight Dense CNN for Edge Detection Type Journal Article
  Year 2022 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 10 Issue Pages 68281-68290  
  Keywords  
  Abstract This paper presents a Lightweight Dense Convolutional (LDC) neural network for edge detection. The proposed model is an adaptation of two state-of-the-art approaches, but it requires less than 4% of parameters in comparison with these approaches. The proposed architecture generates thin edge maps and reaches the highest score (i.e., ODS) when compared with lightweight models (models with less than 1 million parameters), and reaches a similar performance when compare with heavy architectures (models with about 35 million parameters). Both quantitative and qualitative results and comparisons with state-of-the-art models, using different edge detection datasets, are provided. The proposed LDC does not use pre-trained weights and requires straightforward hyper-parameter settings. The source code is released at https://github.com/xavysp/LDC  
  Address 27 June 2022  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes MSIAU; MACO; 600.160; 600.167 Approved no  
  Call Number Admin @ si @ SPS2022 Serial 3751  
Permanent link to this record
 

 
Author Marc Masana; Xialei Liu; Bartlomiej Twardowski; Mikel Menta; Andrew Bagdanov; Joost Van de Weijer edit   pdf
doi  openurl
  Title Class-incremental learning: survey and performance evaluation Type Journal Article
  Year 2022 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume Issue Pages  
  Keywords  
  Abstract For future learning systems incremental learning is desirable, because it allows for: efficient resource usage by eliminating the need to retrain from scratch at the arrival of new data; reduced memory usage by preventing or limiting the amount of data required to be stored -- also important when privacy limitations are imposed; and learning that more closely resembles human learning. The main challenge for incremental learning is catastrophic forgetting, which refers to the precipitous drop in performance on previously learned tasks after learning a new one. Incremental learning of deep neural networks has seen explosive growth in recent years. Initial work focused on task incremental learning, where a task-ID is provided at inference time. Recently we have seen a shift towards class-incremental learning where the learner must classify at inference time between all classes seen in previous tasks without recourse to a task-ID. In this paper, we provide a complete survey of existing methods for incremental learning, and in particular we perform an extensive experimental evaluation on twelve class-incremental methods. We consider several new experimental scenarios, including a comparison of class-incremental methods on multiple large-scale datasets, investigation into small and large domain shifts, and comparison on various network architectures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ MLT2022 Serial 3538  
Permanent link to this record
 

 
Author Shiqi Yang; Yaxing Wang; Joost Van de Weijer; Luis Herranz edit   pdf
openurl 
  Title Unsupervised Domain Adaptation without Source Data by Casting a BAIT Type Miscellaneous
  Year 2020 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract arXiv:2010.12427
Unsupervised domain adaptation (UDA) aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain. Existing UDA methods require access to source data during adaptation, which may not be feasible in some real-world applications. In this paper, we address the source-free unsupervised domain adaptation (SFUDA) problem, where only the source model is available during the adaptation. We propose a method named BAIT to address SFUDA. Specifically, given only the source model, with the source classifier head fixed, we introduce a new learnable classifier. When adapting to the target domain, class prototypes of the new added classifier will act as a bait. They will first approach the target features which deviate from prototypes of the source classifier due to domain shift. Then those target features are pulled towards the corresponding prototypes of the source classifier, thus achieving feature alignment with the source classifier in the absence of source data. Experimental results show that the proposed method achieves state-of-the-art performance on several benchmark datasets compared with existing UDA and SFUDA methods.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ YWW2020 Serial 3539  
Permanent link to this record
 

 
Author Shiqi Yang; Kai Wang; Luis Herranz; Joost Van de Weijer edit   pdf
openurl 
  Title Simple and effective localized attribute representations for zero-shot learning Type Miscellaneous
  Year 2020 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract arXiv:2006.05938
Zero-shot learning (ZSL) aims to discriminate images from unseen classes by exploiting relations to seen classes via their semantic descriptions. Some recent papers have shown the importance of localized features together with fine-tuning the feature extractor to obtain discriminative and transferable features. However, these methods require complex attention or part detection modules to perform explicit localization in the visual space. In contrast, in this paper we propose localizing representations in the semantic/attribute space, with a simple but effective pipeline where localization is implicit. Focusing on attribute representations, we show that our method obtains state-of-the-art performance on CUB and SUN datasets, and also achieves competitive results on AWA2 dataset, outperforming generally more complex methods with explicit localization in the visual space. Our method can be implemented easily, which can be used as a new baseline for zero shot-learning. In addition, our localized representations are highly interpretable as attribute-specific heatmaps.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ YWH2020 Serial 3542  
Permanent link to this record
 

 
Author Sudeep Katakol; Basem Elbarashy; Luis Herranz; Joost Van de Weijer; Antonio Lopez edit   pdf
url  doi
openurl 
  Title Distributed Learning and Inference with Compressed Images Type Journal Article
  Year 2021 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 30 Issue Pages 3069 - 3083  
  Keywords  
  Abstract Modern computer vision requires processing large amounts of data, both while training the model and/or during inference, once the model is deployed. Scenarios where images are captured and processed in physically separated locations are increasingly common (e.g. autonomous vehicles, cloud computing). In addition, many devices suffer from limited resources to store or transmit data (e.g. storage space, channel capacity). In these scenarios, lossy image compression plays a crucial role to effectively increase the number of images collected under such constraints. However, lossy compression entails some undesired degradation of the data that may harm the performance of the downstream analysis task at hand, since important semantic information may be lost in the process. Moreover, we may only have compressed images at training time but are able to use original images at inference time, or vice versa, and in such a case, the downstream model suffers from covariate shift. In this paper, we analyze this phenomenon, with a special focus on vision-based perception for autonomous driving as a paradigmatic scenario. We see that loss of semantic information and covariate shift do indeed exist, resulting in a drop in performance that depends on the compression rate. In order to address the problem, we propose dataset restoration, based on image restoration with generative adversarial networks (GANs). Our method is agnostic to both the particular image compression method and the downstream task; and has the advantage of not adding additional cost to the deployed models, which is particularly important in resource-limited devices. The presented experiments focus on semantic segmentation as a challenging use case, cover a broad range of compression rates and diverse datasets, and show how our method is able to significantly alleviate the negative effects of compression on the downstream visual task.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes LAMP; ADAS; 600.120; 600.118 Approved no  
  Call Number Admin @ si @ KEH2021 Serial 3543  
Permanent link to this record
 

 
Author Mikel Menta; Adriana Romero; Joost Van de Weijer edit   pdf
openurl 
  Title Learning to adapt class-specific features across domains for semantic segmentation Type Miscellaneous
  Year 2020 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract arXiv:2001.08311
Recent advances in unsupervised domain adaptation have shown the effectiveness of adversarial training to adapt features across domains, endowing neural networks with the capability of being tested on a target domain without requiring any training annotations in this domain. The great majority of existing domain adaptation models rely on image translation networks, which often contain a huge amount of domain-specific parameters. Additionally, the feature adaptation step often happens globally, at a coarse level, hindering its applicability to tasks such as semantic segmentation, where details are of crucial importance to provide sharp results. In this thesis, we present a novel architecture, which learns to adapt features across domains by taking into account per class information. To that aim, we design a conditional pixel-wise discriminator network, whose output is conditioned on the segmentation masks. Moreover, following recent advances in image translation, we adopt the recently introduced StarGAN architecture as image translation backbone, since it is able to perform translations across multiple domains by means of a single generator network. Preliminary results on a segmentation task designed to assess the effectiveness of the proposed approach highlight the potential of the model, improving upon strong baselines and alternative designs.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ MRW2020 Serial 3545  
Permanent link to this record
 

 
Author Giovanni Maria Farinella; Petia Radeva; Jose Braz edit  openurl
  Title Proceedings of the 15th International Joint Conference on Computer Vision; Imaging and Computer Graphics Theory and Applications Type Book Whole
  Year 2020 Publication Proceedings of the 15th International Joint Conference on Computer Vision; Imaging and Computer Graphics Theory and Applications; VISIGRAPP 2020 Abbreviated Journal  
  Volume 4 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes MILAB Approved no  
  Call Number Admin @ si @ FRB2020a Serial 3546  
Permanent link to this record
 

 
Author Giovanni Maria Farinella; Petia Radeva; Jose Braz edit  openurl
  Title Proceedings of the 15th International Joint Conference on Computer Vision; Imaging and Computer Graphics Theory and Applications Type Book Whole
  Year 2020 Publication Proceedings of the 15th International Joint Conference on Computer Vision; Imaging and Computer Graphics Theory and Applications; VISIGRAPP 2020 Abbreviated Journal  
  Volume 5 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes MILAB Approved no  
  Call Number Admin @ si @ FRB2020b Serial 3547  
Permanent link to this record
 

 
Author Carola Figueroa Flores; David Berga; Joost Van de Weijer; Bogdan Raducanu edit   pdf
url  openurl
  Title Saliency for free: Saliency prediction as a side-effect of object recognition Type Journal Article
  Year 2021 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 150 Issue Pages 1-7  
  Keywords Saliency maps; Unsupervised learning; Object recognition  
  Abstract Saliency is the perceptual capacity of our visual system to focus our attention (i.e. gaze) on relevant objects instead of the background. So far, computational methods for saliency estimation required the explicit generation of a saliency map, process which is usually achieved via eyetracking experiments on still images. This is a tedious process that needs to be repeated for each new dataset. In the current paper, we demonstrate that is possible to automatically generate saliency maps without ground-truth. In our approach, saliency maps are learned as a side effect of object recognition. Extensive experiments carried out on both real and synthetic datasets demonstrated that our approach is able to generate accurate saliency maps, achieving competitive results when compared with supervised methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes LAMP; 600.147; 600.120 Approved no  
  Call Number Admin @ si @ FBW2021 Serial 3559  
Permanent link to this record
 

 
Author Guillem Cucurull; Pau Rodriguez; Vacit Oguz Yazici; Josep M. Gonfaus; Xavier Roca; Jordi Gonzalez edit  openurl
  Title Deep Inference of Personality Traits by Integrating Image and Word Use in Social Networks Type Miscellaneous
  Year 2018 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract arXiv:1802.06757
Social media, as a major platform for communication and information exchange, is a rich repository of the opinions and sentiments of 2.3 billion users about a vast spectrum of topics. To sense the whys of certain social user’s demands and cultural-driven interests, however, the knowledge embedded in the 1.8 billion pictures which are uploaded daily in public profiles has just started to be exploited since this process has been typically been text-based. Following this trend on visual-based social analysis, we present a novel methodology based on Deep Learning to build a combined image-and-text based personality trait model, trained with images posted together with words found highly correlated to specific personality traits. So the key contribution here is to explore whether OCEAN personality trait modeling can be addressed based on images, here called MindPics, appearing with certain tags with psychological insights. We found that there is a correlation between those posted images and their accompanying texts, which can be successfully modeled using deep neural networks for personality estimation. The experimental results are consistent with previous cyber-psychology results based on texts or images.
In addition, classification results on some traits show that some patterns emerge in the set of images corresponding to a specific text, in essence to those representing an abstract concept. These results open new avenues of research for further refining the proposed personality model under the supervision of psychology experts.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes ISE; 600.098; 600.119 Approved no  
  Call Number Admin @ si @ CRY2018 Serial 3550  
Permanent link to this record
 

 
Author Ana Garcia Rodriguez; Yael Tudela; Henry Cordova; S. Carballal; I. Ordas; L. Moreira; E. Vaquero; O. Ortiz; L. Rivero; F. Javier Sanchez; Miriam Cuatrecasas; Maria Pellise; Jorge Bernal; Gloria Fernandez Esparrach edit  doi
openurl 
  Title First in Vivo Computer-Aided Diagnosis of Colorectal Polyps using White Light Endoscopy Type Journal Article
  Year 2022 Publication Endoscopy Abbreviated Journal END  
  Volume 54 Issue Pages  
  Keywords  
  Abstract  
  Address 2022/04/14  
  Corporate Author Thesis  
  Publisher Georg Thieme Verlag KG Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes ISE Approved no  
  Call Number Admin @ si @ GTC2022a Serial 3746  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: