|   | 
Details
   web
Records Links
Author Xavier Otazu edit   pdf
url  openurl
Title Perceptual tone-mapping operator based on multiresolution contrast decomposition Type Abstract
Year 2012 Publication Perception Abbreviated Journal PER  
Volume 41 Issue Pages 86  
Keywords  
Abstract Tone-mapping operators (TMO) are used to display high dynamic range(HDR) images in low dynamic range (LDR) displays. Many computational and biologically inspired approaches have been used in the literature, being many of them based on multiresolution decompositions. In this work, a simple two stage model for TMO is presented. The first stage is a novel multiresolution contrast decomposition, which is inspired in a pyramidal contrast decomposition (Peli, 1990 Journal of the Optical Society of America7(10), 2032-2040).
This novel multiresolution decomposition represents the Michelson contrast of the image at different spatial scales. This multiresolution contrast representation, applied on the intensity channel of an opponent colour decomposition, is processed by a non-linear saturating model of V1 neurons (Albrecht et al, 2002 Journal ofNeurophysiology 88(2) 888-913). This saturation model depends on the visual frequency, and it has been modified in order to include information from the extended Contrast Sensitivity Function (e-CSF) (Otazu et al, 2010 Journal ofVision10(12) 5).
A set of HDR images in Radiance RGBE format (from CIS HDR Photographic Survey and Greg Ward database) have been used to test the model, obtaining a set of LDR images. The resulting LDR images do not show the usual halo or color modification artifacts.
 
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 0301-0066 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number (up) Admin @ si @ Ota2012 Serial 2179  
Permanent link to this record
 

 
Author C. Alejandro Parraga edit  doi
isbn  openurl
Title Color Vision, Computational Methods for Type Book Chapter
Year 2014 Publication Encyclopedia of Computational Neuroscience Abbreviated Journal  
Volume Issue Pages 1-11  
Keywords Color computational vision; Computational neuroscience of color  
Abstract The study of color vision has been aided by a whole battery of computational methods that attempt to describe the mechanisms that lead to our perception of colors in terms of the information-processing properties of the visual system. Their scope is highly interdisciplinary, linking apparently dissimilar disciplines such as mathematics, physics, computer science, neuroscience, cognitive science, and psychology. Since the sensation of color is a feature of our brains, computational approaches usually include biological features of neural systems in their descriptions, from retinal light-receptor interaction to subcortical color opponency, cortical signal decoding, and color categorization. They produce hypotheses that are usually tested by behavioral or psychophysical experiments.  
Address  
Corporate Author Thesis  
Publisher Springer-Verlag Berlin Heidelberg Place of Publication Editor Dieter Jaeger; Ranu Jung  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN 978-1-4614-7320-6 Medium  
Area Expedition Conference  
Notes CIC; 600.074 Approved no  
Call Number (up) Admin @ si @ Par2014 Serial 2512  
Permanent link to this record
 

 
Author C. Alejandro Parraga edit  isbn
openurl 
Title Perceptual Psychophysics Type Book Chapter
Year 2015 Publication Biologically-Inspired Computer Vision: Fundamentals and Applications Abbreviated Journal  
Volume Issue Pages  
Keywords  
Abstract  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor G.Cristobal; M.Keil; L.Perrinet  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN 978-3-527-41264-8 Medium  
Area Expedition Conference  
Notes CIC; 600.074 Approved no  
Call Number (up) Admin @ si @ Par2015 Serial 2600  
Permanent link to this record
 

 
Author Olivier Penacchio; Laura Dempere-Marco; Xavier Otazu edit   pdf
openurl 
Title Switching off brightness induction through induction-reversed images Type Abstract
Year 2012 Publication Perception Abbreviated Journal PER  
Volume 41 Issue Pages 208  
Keywords  
Abstract Brightness induction is the modulation of the perceived intensity of an
area by the luminance of surrounding areas. Although V1 is traditionally regarded as
an area mostly responsive to retinal information, neurophysiological evidence
suggests that it may explicitly represent brightness information. In this work, we
investigate possible neural mechanisms underlying brightness induction. To this end,
we consider the model by Z Li (1999 Computation and Neural Systems10187-212)
which is constrained by neurophysiological data and focuses on the part of V1
responsible for contextual influences. This model, which has proven to account for
phenomena such as contour detection and preattentive segmentation, shares with
brightness induction the relevant effect of contextual influences. Importantly, the
input to our network model derives from a complete multiscale and multiorientation
wavelet decomposition, which makes it possible to recover an image reflecting the
perceived luminance and successfully accounts for well known psychophysical
effects for both static and dynamic contexts. By further considering inverse problem
techniques we define induction-reversed images: given a target image, we build an
image whose perceived luminance matches the actual luminance of the original
stimulus, thus effectively canceling out brightness induction effects. We suggest that
induction-reversed images may help remove undesired perceptual effects and can
find potential applications in fields such as radiological image interpretation
 
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number (up) Admin @ si @ PDO2012a Serial 2180  
Permanent link to this record
 

 
Author Olivier Penacchio; Laura Dempere-Marco; Xavier Otazu edit   pdf
openurl 
Title A Neurodynamical Model Of Brightness Induction In V1 Following Static And Dynamic Contextual Influences Type Abstract
Year 2012 Publication 8th Federation of European Neurosciences Abbreviated Journal  
Volume 6 Issue Pages 63-64  
Keywords  
Abstract Brightness induction is the modulation of the perceived intensity of an area by the luminance of surrounding areas. Although striate cortex is traditionally regarded as an area mostly responsive to ensory (i.e. retinal) information,
neurophysiological evidence suggests that perceived brightness information mightbe explicitly represented in V1.
Such evidence has been observed both in anesthetised cats where neuronal response modulations have been found to follow luminance changes outside the receptive felds and in human fMRI measurements. In this work, possible neural mechanisms that ofer a plausible explanation for such phenomenon are investigated. To this end, we consider the model proposed by Z.Li (Li, Network:Comput. Neural Syst., 10 (1999)) which is based on neurophysiological evidence and focuses on the part of V1 responsible for contextual infuences, i.e. layer 2-3 pyramidal cells, interneurons, and horizontal intracortical connections. This model has reproduced other phenomena such as contour detection and preattentive segmentation, which share with brightness induction the relevant efect of contextual infuences. We have extended the original model such that the input to the network is obtained from a complete multiscale and multiorientation wavelet decomposition, thereby allowing the recovery of an image refecting the perceived intensity. The proposed model successfully accounts for well known psychophysical efects for static contexts (among them: the White's and modifed White's efects, the Todorovic, Chevreul, achromatic ring patterns, and grating induction efects) and also for brigthness induction in dynamic contexts defned by modulating the luminance of surrounding areas (e.g. the brightness of a static central area is perceived to vary in antiphase to the sinusoidal luminance changes of its surroundings). This work thus suggests that intra-cortical interactions in V1 could partially explain perceptual brightness induction efects and reveals how a common general architecture may account for several different fundamental processes emerging early in the visual processing pathway.
 
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference FENS  
Notes CIC Approved no  
Call Number (up) Admin @ si @ PDO2012b Serial 2181  
Permanent link to this record
 

 
Author Olivier Penacchio edit  openurl
Title Relative Density of L, M, S photoreceptors in the Human Retina Type Report
Year 2009 Publication CVC Technical Report Abbreviated Journal  
Volume 135 Issue Pages  
Keywords  
Abstract  
Address  
Corporate Author Computer Vision Center Thesis Master's thesis  
Publisher Place of Publication Bellaterra, Barcelona Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number (up) Admin @ si @ Pen2009 Serial 2394  
Permanent link to this record
 

 
Author Olivier Penacchio edit   pdf
url  doi
openurl 
Title Mixed Hodge Structures and Equivariant Sheaves on the Projective Plane Type Journal Article
Year 2011 Publication Mathematische Nachrichten Abbreviated Journal MN  
Volume 284 Issue 4 Pages 526-542  
Keywords Mixed Hodge structures, equivariant sheaves, MSC (2010) Primary: 14C30, Secondary: 14F05, 14M25  
Abstract We describe an equivalence of categories between the category of mixed Hodge structures and a category of equivariant vector bundles on a toric model of the complex projective plane which verify some semistability condition. We then apply this correspondence to define an invariant which generalizes the notion of R-split mixed Hodge structure and give calculations for the first group of cohomology of possibly non smooth or non-complete curves of genus 0 and 1. Finally, we describe some extension groups of mixed Hodge structures in terms of equivariant extensions of coherent sheaves. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim  
Address  
Corporate Author Thesis  
Publisher WILEY-VCH Verlag Place of Publication Editor R. Mennicken  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1522-2616 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number (up) Admin @ si @ Pen2011 Serial 1721  
Permanent link to this record
 

 
Author Olivier Penacchio; C. Alejandro Parraga edit  url
openurl 
Title What is the best criterion for an efficient design of retinal photoreceptor mosaics? Type Journal Article
Year 2011 Publication Perception Abbreviated Journal PER  
Volume 40 Issue Pages 197  
Keywords  
Abstract The proportions of L, M and S photoreceptors in the primate retina are arguably determined by evolutionary pressure and the statistics of the visual environment. Two information theory-based approaches have been recently proposed for explaining the asymmetrical spatial densities of photoreceptors in humans. In the first approach Garrigan et al (2010 PLoS ONE 6 e1000677), a model for computing the information transmitted by cone arrays which considers the differential blurring produced by the long-wavelength accommodation of the eye’s lens is proposed. Their results explain the sparsity of S-cones but the optimum depends weakly on the L:M cone ratio. In the second approach (Penacchio et al, 2010 Perception 39 ECVP Supplement, 101), we show that human cone arrays make the visual representation scale-invariant, allowing the total entropy of the signal to be preserved while decreasing individual neurons’ entropy in further retinotopic representations. This criterion provides a thorough description of the distribution of L:M cone ratios and does not depend on differential blurring of the signal by the lens. Here, we investigate the similarities and differences of both approaches when applied to the same database. Our results support a 2-criteria optimization in the space of cone ratios whose components are arguably important and mostly unrelated.
[This work was partially funded by projects TIN2010-21771-C02-1 and Consolider-Ingenio 2010-CSD2007-00018 from the Spanish MICINN. CAP was funded by grant RYC-2007-00484]
 
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number (up) Admin @ si @ PeP2011a Serial 1719  
Permanent link to this record
 

 
Author Jaykishan Patel; Alban Flachot; Javier Vazquez; David H. Brainard; Thomas S. A. Wallis; Marcus A. Brubaker; Richard F. Murray edit  url
openurl 
Title A deep convolutional neural network trained to infer surface reflectance is deceived by mid-level lightness illusions Type Journal Article
Year 2023 Publication Journal of Vision Abbreviated Journal JV  
Volume 23 Issue 9 Pages 4817-4817  
Keywords  
Abstract A long-standing view is that lightness illusions are by-products of strategies employed by the visual system to stabilize its perceptual representation of surface reflectance against changes in illumination. Computationally, one such strategy is to infer reflectance from the retinal image, and to base the lightness percept on this inference. CNNs trained to infer reflectance from images have proven successful at solving this problem under limited conditions. To evaluate whether these CNNs provide suitable starting points for computational models of human lightness perception, we tested a state-of-the-art CNN on several lightness illusions, and compared its behaviour to prior measurements of human performance. We trained a CNN (Yu & Smith, 2019) to infer reflectance from luminance images. The network had a 30-layer hourglass architecture with skip connections. We trained the network via supervised learning on 100K images, rendered in Blender, each showing randomly placed geometric objects (surfaces, cubes, tori, etc.), with random Lambertian reflectance patterns (solid, Voronoi, or low-pass noise), under randomized point+ambient lighting. The renderer also provided the ground-truth reflectance images required for training. After training, we applied the network to several visual illusions. These included the argyle, Koffka-Adelson, snake, White’s, checkerboard assimilation, and simultaneous contrast illusions, along with their controls where appropriate. The CNN correctly predicted larger illusions in the argyle, Koffka-Adelson, and snake images than in their controls. It also correctly predicted an assimilation effect in White's illusion. It did not, however, account for the checkerboard assimilation or simultaneous contrast effects. These results are consistent with the view that at least some lightness phenomena are by-products of a rational approach to inferring stable representations of physical properties from intrinsically ambiguous retinal images. Furthermore, they suggest that CNN models may be a promising starting point for new models of human lightness perception.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes MACO; CIC Approved no  
Call Number (up) Admin @ si @ PFV2023 Serial 3890  
Permanent link to this record
 

 
Author Olivier Penacchio; Xavier Otazu; Laura Dempere-Marco edit   pdf
doi  openurl
Title A Neurodynamical Model of Brightness Induction in V1 Type Journal Article
Year 2013 Publication PloS ONE Abbreviated Journal Plos  
Volume 8 Issue 5 Pages e64086  
Keywords  
Abstract Brightness induction is the modulation of the perceived intensity of an area by the luminance of surrounding areas. Recent neurophysiological evidence suggests that brightness information might be explicitly represented in V1, in contrast to the more common assumption that the striate cortex is an area mostly responsive to sensory information. Here we investigate possible neural mechanisms that offer a plausible explanation for such phenomenon. To this end, a neurodynamical model which is based on neurophysiological evidence and focuses on the part of V1 responsible for contextual influences is presented. The proposed computational model successfully accounts for well known psychophysical effects for static contexts and also for brightness induction in dynamic contexts defined by modulating the luminance of surrounding areas. This work suggests that intra-cortical interactions in V1 could, at least partially, explain brightness induction effects and reveals how a common general architecture may account for several different fundamental processes, such as visual saliency and brightness induction, which emerge early in the visual processing pathway.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number (up) Admin @ si @ POD2013 Serial 2242  
Permanent link to this record
 

 
Author Olivier Penacchio; Xavier Otazu; A. wilkins; J. Harris edit  url
openurl 
Title Uncomfortable images prevent lateral interactions in the cortex from providing a sparse code Type Conference Article
Year 2015 Publication European Conference on Visual Perception ECVP2015 Abbreviated Journal  
Volume Issue Pages  
Keywords  
Abstract  
Address Liverpool; uk; August 2015  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference ECVP  
Notes NEUROBIT;CIC Approved no  
Call Number (up) Admin @ si @ POW2015 Serial 2633  
Permanent link to this record
 

 
Author C. Alejandro Parraga; Olivier Penacchio; Maria Vanrell edit  openurl
Title Retinal Filtering Matches Natural Image Statistics at Low Luminance Levels Type Journal Article
Year 2011 Publication Perception Abbreviated Journal PER  
Volume 40 Issue Pages 96  
Keywords  
Abstract The assumption that the retina’s main objective is to provide a minimum entropy representation to higher visual areas (ie efficient coding principle) allows to predict retinal filtering in space–time and colour (Atick, 1992 Network 3 213–251). This is achieved by considering the power spectra of natural images (which is proportional to 1/f2) and the suppression of retinal and image noise. However, most studies consider images within a limited range of lighting conditions (eg near noon) whereas the visual system’s spatial filtering depends on light intensity and the spatiochromatic properties of natural scenes depend of the time of the day. Here, we explore whether the dependence of visual spatial filtering on luminance match the changes in power spectrum of natural scenes at different times of the day. Using human cone-activation based naturalistic stimuli (from the Barcelona Calibrated Images Database), we show that for a range of luminance levels, the shape of the retinal CSF reflects the slope of the power spectrum at low spatial frequencies. Accordingly, the retina implements the filtering which best decorrelates the input signal at every luminance level. This result is in line with the body of work that places efficient coding as a guiding neural principle.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number (up) Admin @ si @ PPV2011 Serial 1720  
Permanent link to this record
 

 
Author C. Alejandro Parraga; Jordi Roca; Dimosthenis Karatzas; Sophie Wuerger edit   pdf
url  doi
openurl 
Title Limitations of visual gamma corrections in LCD displays Type Journal Article
Year 2014 Publication Displays Abbreviated Journal Dis  
Volume 35 Issue 5 Pages 227–239  
Keywords Display calibration; Psychophysics; Perceptual; Visual gamma correction; Luminance matching; Observer-based calibration  
Abstract A method for estimating the non-linear gamma transfer function of liquid–crystal displays (LCDs) without the need of a photometric measurement device was described by Xiao et al. (2011) [1]. It relies on observer’s judgments of visual luminance by presenting eight half-tone patterns with luminances from 1/9 to 8/9 of the maximum value of each colour channel. These half-tone patterns were distributed over the screen both over the vertical and horizontal viewing axes. We conducted a series of photometric and psychophysical measurements (consisting in the simultaneous presentation of half-tone patterns in each trial) to evaluate whether the angular dependency of the light generated by three different LCD technologies would bias the results of these gamma transfer function estimations. Our results show that there are significant differences between the gamma transfer functions measured and produced by observers at different viewing angles. We suggest appropriate modifications to the Xiao et al. paradigm to counterbalance these artefacts which also have the advantage of shortening the amount of time spent in collecting the psychophysical measurements.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC; DAG; 600.052; 600.077; 600.074 Approved no  
Call Number (up) Admin @ si @ PRK2014 Serial 2511  
Permanent link to this record
 

 
Author C. Alejandro Parraga; Jordi Roca; Maria Vanrell edit  url
doi  openurl
Title Do Basic Colors Influence Chromatic Adaptation? Type Journal Article
Year 2011 Publication Journal of Vision Abbreviated Journal VSS  
Volume 11 Issue 11 Pages 85  
Keywords  
Abstract Color constancy (the ability to perceive colors relatively stable under different illuminants) is the result of several mechanisms spread across different neural levels and responding to several visual scene cues. It is usually measured by estimating the perceived color of a grey patch under an illuminant change. In this work, we hypothesize whether chromatic adaptation (without a reference white or grey) could be driven by certain colors, specifically those corresponding to the universal color terms proposed by Berlin and Kay (1969). To this end we have developed a new psychophysical paradigm in which subjects adjust the color of a test patch (in CIELab space) to match their memory of the best example of a given color chosen from the universal terms list (grey, red, green, blue, yellow, purple, pink, orange and brown). The test patch is embedded inside a Mondrian image and presented on a calibrated CRT screen inside a dark cabin. All subjects were trained to “recall” their most exemplary colors reliably from memory and asked to always produce the same basic colors when required under several adaptation conditions. These include achromatic and colored Mondrian backgrounds, under a simulated D65 illuminant and several colored illuminants. A set of basic colors were measured for each subject under neutral conditions (achromatic background and D65 illuminant) and used as “reference” for the rest of the experiment. The colors adjusted by the subjects in each adaptation condition were compared to the reference colors under the corresponding illuminant and a “constancy index” was obtained for each of them. Our results show that for some colors the constancy index was better than for grey. The set of best adapted colors in each condition were common to a majority of subjects and were dependent on the chromaticity of the illuminant and the chromatic background considered.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1534-7362 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number (up) Admin @ si @ PRV2011 Serial 1759  
Permanent link to this record
 

 
Author Ivet Rafegas edit  openurl
Title Exploring Low-Level Vision Models. Case Study: Saliency Prediction Type Report
Year 2013 Publication CVC Technical Report Abbreviated Journal  
Volume 175 Issue Pages  
Keywords  
Abstract  
Address  
Corporate Author Thesis Master's thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number (up) Admin @ si @ Raf2013 Serial 2409  
Permanent link to this record
 

 
Author Ivet Rafegas edit  isbn
openurl 
Title Color in Visual Recognition: from flat to deep representations and some biological parallelisms Type Book Whole
Year 2017 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
Volume Issue Pages  
Keywords  
Abstract Visual recognition is one of the main problems in computer vision that attempts to solve image understanding by deciding what objects are in images. This problem can be computationally solved by using relevant sets of visual features, such as edges, corners, color or more complex object parts. This thesis contributes to how color features have to be represented for recognition tasks.

Image features can be extracted following two different approaches. A first approach is defining handcrafted descriptors of images which is then followed by a learning scheme to classify the content (named flat schemes in Kruger et al. (2013). In this approach, perceptual considerations are habitually used to define efficient color features. Here we propose a new flat color descriptor based on the extension of color channels to boost the representation of spatio-chromatic contrast that surpasses state-of-the-art approaches. However, flat schemes present a lack of generality far away from the capabilities of biological systems. A second approach proposes evolving these flat schemes into a hierarchical process, like in the visual cortex. This includes an automatic process to learn optimal features. These deep schemes, and more specifically Convolutional Neural Networks (CNNs), have shown an impressive performance to solve various vision problems. However, there is a lack of understanding about the internal representation obtained, as a result of automatic learning. In this thesis we propose a new methodology to explore the internal representation of trained CNNs by defining the Neuron Feature as a visualization of the intrinsic features encoded in each individual neuron. Additionally, and inspired by physiological techniques, we propose to compute different neuron selectivity indexes (e.g., color, class, orientation or symmetry, amongst others) to label and classify the full CNN neuron population to understand learned representations.

Finally, using the proposed methodology, we show an in-depth study on how color is represented on a specific CNN, trained for object recognition, that competes with primate representational abilities (Cadieu et al (2014)). We found several parallelisms with biological visual systems: (a) a significant number of color selectivity neurons throughout all the layers; (b) an opponent and low frequency representation of color oriented edges and a higher sampling of frequency selectivity in brightness than in color in 1st layer like in V1; (c) a higher sampling of color hue in the second layer aligned to observed hue maps in V2; (d) a strong color and shape entanglement in all layers from basic features in shallower layers (V1 and V2) to object and background shapes in deeper layers (V4 and IT); and (e) a strong correlation between neuron color selectivities and color dataset bias.
 
Address November 2017  
Corporate Author Thesis Ph.D. thesis  
Publisher Ediciones Graficas Rey Place of Publication Editor Maria Vanrell  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN 978-84-945373-7-0 Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number (up) Admin @ si @ Raf2017 Serial 3100  
Permanent link to this record
 

 
Author Ivet Rafegas; Maria Vanrell edit   pdf
openurl 
Title Color spaces emerging from deep convolutional networks Type Conference Article
Year 2016 Publication 24th Color and Imaging Conference Abbreviated Journal  
Volume Issue Pages 225-230  
Keywords  
Abstract Award for the best interactive session
Defining color spaces that provide a good encoding of spatio-chromatic properties of color surfaces is an open problem in color science [8, 22]. Related to this, in computer vision the fusion of color with local image features has been studied and evaluated [16]. In human vision research, the cells which are selective to specific color hues along the visual pathway are also a focus of attention [7, 14]. In line with these research aims, in this paper we study how color is encoded in a deep Convolutional Neural Network (CNN) that has been trained on more than one million natural images for object recognition. These convolutional nets achieve impressive performance in computer vision, and rival the representations in human brain. In this paper we explore how color is represented in a CNN architecture that can give some intuition about efficient spatio-chromatic representations. In convolutional layers the activation of a neuron is related to a spatial filter, that combines spatio-chromatic representations. We use an inverted version of it to explore the properties. Using a series of unsupervised methods we classify different type of neurons depending on the color axes they define and we propose an index of color-selectivity of a neuron. We estimate the main color axes that emerge from this trained net and we prove that colorselectivity of neurons decreases from early to deeper layers.
 
Address San Diego; USA; November 2016  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference CIC  
Notes CIC Approved no  
Call Number (up) Admin @ si @ RaV2016a Serial 2894  
Permanent link to this record
 

 
Author Ivet Rafegas; Maria Vanrell edit  openurl
Title Colour Visual Coding in trained Deep Neural Networks Type Abstract
Year 2016 Publication European Conference on Visual Perception Abbreviated Journal  
Volume Issue Pages  
Keywords  
Abstract  
Address Barcelona; Spain; August 2016  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference ECVP  
Notes CIC Approved no  
Call Number (up) Admin @ si @ RaV2016b Serial 2895  
Permanent link to this record