toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Simone Balocco; Carlo Gatta; Francesco Ciompi; Oriol Pujol; Xavier Carrillo; J. Mauri; Petia Radeva edit  doi
isbn  openurl
  Title Combining Growcut and Temporal Correlation for IVUS Lumen Segmentation Type Conference Article
  Year 2011 Publication 5th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume 6669 Issue Pages 556-563  
  Keywords  
  Abstract The assessment of arterial luminal area, performed by IVUS analysis, is a clinical index used to evaluate the degree of coronary artery disease. In this paper we propose a novel approach to automatically segment the vessel lumen, which combines model-based temporal information extracted from successive frames of the sequence, with spatial classification using the Growcut algorithm. The performance of the method is evaluated by an in vivo experiment on 300 IVUS frames. The automatic and manual segmentation performances in general vessel and stent frames are comparable. The average segmentation error in vessel, stent and bifurcation frames are 0.17±0.08 mm, 0.18±0.07 mm and 0.31±0.12 mm respectively.  
  Address Las Palmas de Gran Canaria. Spain  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Berlin Editor Jordi Vitria; Joao Miguel Raposo; Mario Hernandez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-21256-7 Medium  
  Area Expedition Conference IbPRIA  
  Notes MILAB;HuPBA Approved no  
  Call Number (up) Admin @ si @ BGC2011a Serial 1741  
Permanent link to this record
 

 
Author Simone Balocco; Carlo Gatta; Xavier Carrillo; J. Mauri; Petia Radeva edit  doi
isbn  openurl
  Title Plaque Type, Plaque Burden and Wall Shear Stress Relation in Coronary Arteries Assessed by X-ray Angiography and Intravascular Ultrasound: a Qualitative Study Type Conference Article
  Year 2011 Publication 14th International Symposium on Applied Sciences in Biomedical and Communication Technologies Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In this paper, we present a complete framework that automatically provides fluid-dynamic and plaque analysis from IVUS and Angiographic sequences. Such framework is used to analyze, in three coronary arteries, the relation between wall shear stress with type and amount of plaque. Preliminary qualitative results show an inverse relation between the wall shear stress and the plaque burden, which is confirmed by the fact that the plaque growth is higher on the wall having concave curvature. Regarding the plaque type it was observed that regions having low shear stress are predominantly fibro-lipidic while the heavy calcifications are in general located in areas of the vessel having high WSS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4503-0913-4 Medium  
  Area Expedition Conference ISABEL  
  Notes MILAB Approved no  
  Call Number (up) Admin @ si @ BGC2011b Serial 1799  
Permanent link to this record
 

 
Author Simone Balocco; Carlo Gatta; Francesco Ciompi; A. Wahle; Petia Radeva; S. Carlier; G. Unal; E. Sanidas; J. Mauri; X. Carillo; T. Kovarnik; C. Wang; H. Chen; T. P. Exarchos; D. I. Fotiadis; F. Destrempes; G. Cloutier; Oriol Pujol; Marina Alberti; E. G. Mendizabal-Ruiz; M. Rivera; T. Aksoy; R. W. Downe; I. A. Kakadiaris edit   pdf
doi  openurl
  Title Standardized evaluation methodology and reference database for evaluating IVUS image segmentation Type Journal Article
  Year 2014 Publication Computerized Medical Imaging and Graphics Abbreviated Journal CMIG  
  Volume 38 Issue 2 Pages 70-90  
  Keywords IVUS (intravascular ultrasound); Evaluation framework; Algorithm comparison; Image segmentation  
  Abstract This paper describes an evaluation framework that allows a standardized and quantitative comparison of IVUS lumen and media segmentation algorithms. This framework has been introduced at the MICCAI 2011 Computing and Visualization for (Intra)Vascular Imaging (CVII) workshop, comparing the results of eight teams that participated.
We describe the available data-base comprising of multi-center, multi-vendor and multi-frequency IVUS datasets, their acquisition, the creation of the reference standard and the evaluation measures. The approaches address segmentation of the lumen, the media, or both borders; semi- or fully-automatic operation; and 2-D vs. 3-D methodology. Three performance measures for quantitative analysis have
been proposed. The results of the evaluation indicate that segmentation of the vessel lumen and media is possible with an accuracy that is comparable to manual annotation when semi-automatic methods are used, as well as encouraging results can be obtained also in case of fully-automatic segmentation. The analysis performed in this paper also highlights the challenges in IVUS segmentation that remains to be
solved.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; LAMP; HuPBA; 600.046; 600.063; 600.079 Approved no  
  Call Number (up) Admin @ si @ BGC2013 Serial 2314  
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera edit   pdf
openurl 
  Title Three-Dimensional Design of Error Correcting Output Codes Type Conference Article
  Year 2012 Publication 8th International Conference on Machine Learning and Data Mining Abbreviated Journal  
  Volume Issue Pages 29-  
  Keywords  
  Abstract  
  Address Berlin, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MLDM  
  Notes HuPBA;MILAB Approved no  
  Call Number (up) Admin @ si @ BGE2012a Serial 2041  
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera edit   pdf
doi  isbn
openurl 
  Title Error Correcting Output Codes for multiclass classification: Application to two image vision problems Type Conference Article
  Year 2012 Publication 16th symposium on Artificial Intelligence & Signal Processing Abbreviated Journal  
  Volume Issue Pages 508-513  
  Keywords  
  Abstract Error-correcting output codes (ECOC) represents a powerful framework to deal with multiclass classification problems based on combining binary classifiers. The key factor affecting the performance of ECOC methods is the independence of binary classifiers, without which the ECOC method would be ineffective. In spite of its ability on classification of problems with relatively large number of classes, it has been applied in few real world problems. In this paper, we investigate the behavior of the ECOC approach on two image vision problems: logo recognition and shape classification using Decision Tree and AdaBoost as the base learners. The results show that the ECOC method can be used to improve the classification performance in comparison with the classical multiclass approaches.  
  Address Shiraz, Iran  
  Corporate Author Thesis  
  Publisher IEEE Xplore Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4673-1478-7 Medium  
  Area Expedition Conference AISP  
  Notes HuPBA;MILAB Approved no  
  Call Number (up) Admin @ si @ BGE2012b Serial 2042  
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera edit   pdf
doi  isbn
openurl 
  Title Efficient pairwise classification using Local Cross Off strategy Type Conference Article
  Year 2012 Publication 25th Canadian Conference on Artificial Intelligence Abbreviated Journal  
  Volume 7310 Issue Pages 25-36  
  Keywords  
  Abstract The pairwise classification approach tends to perform better than other well-known approaches when dealing with multiclass classification problems. In the pairwise approach, however, the nuisance votes of many irrelevant classifiers may result in a wrong prediction class. To overcome this problem, a novel method, Local Crossing Off (LCO), is presented and evaluated in this paper. The proposed LCO system takes advantage of nearest neighbor classification algorithm because of its simplicity and speed, as well as the strength of other two powerful binary classifiers to discriminate between two classes. This paper provides a set of experimental results on 20 datasets using two base learners: Neural Networks and Support Vector Machines. The results show that the proposed technique not only achieves better classification accuracy, but also is computationally more efficient for tackling classification problems which have a relatively large number of target classes.  
  Address Toronto, Ontario  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-30352-4 Medium  
  Area Expedition Conference AI  
  Notes HuPBA;MILAB Approved no  
  Call Number (up) Admin @ si @ BGE2012c Serial 2044  
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera edit  url
doi  openurl
  Title A Genetic-based Subspace Analysis Method for Improving Error-Correcting Output Coding Type Journal Article
  Year 2013 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 46 Issue 10 Pages 2830-2839  
  Keywords Error Correcting Output Codes; Evolutionary computation; Multiclass classification; Feature subspace; Ensemble classification  
  Abstract Two key factors affecting the performance of Error Correcting Output Codes (ECOC) in multiclass classification problems are the independence of binary classifiers and the problem-dependent coding design. In this paper, we propose an evolutionary algorithm-based approach to the design of an application-dependent codematrix in the ECOC framework. The central idea of this work is to design a three-dimensional codematrix, where the third dimension is the feature space of the problem domain. In order to do that, we consider the feature space in the design process of the codematrix with the aim of improving the independence and accuracy of binary classifiers. The proposed method takes advantage of some basic concepts of ensemble classification, such as diversity of classifiers, and also benefits from the evolutionary approach for optimizing the three-dimensional codematrix, taking into account the problem domain. We provide a set of experimental results using a set of benchmark datasets from the UCI Machine Learning Repository, as well as two real multiclass Computer Vision problems. Both sets of experiments are conducted using two different base learners: Neural Networks and Decision Trees. The results show that the proposed method increases the classification accuracy in comparison with the state-of-the-art ECOC coding techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number (up) Admin @ si @ BGE2013a Serial 2247  
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera edit   pdf
doi  isbn
openurl 
  Title Logo recognition Based on the Dempster-Shafer Fusion of Multiple Classifiers Type Conference Article
  Year 2013 Publication 26th Canadian Conference on Artificial Intelligence Abbreviated Journal  
  Volume 7884 Issue Pages 1-12  
  Keywords Logo recognition; ensemble classification; Dempster-Shafer fusion; Zernike moments; generic Fourier descriptor; shape signature  
  Abstract Best paper award
The performance of different feature extraction and shape description methods in trademark image recognition systems have been studied by several researchers. However, the potential improvement in classification through feature fusion by ensemble-based methods has remained unattended. In this work, we evaluate the performance of an ensemble of three classifiers, each trained on different feature sets. Three promising shape description techniques, including Zernike moments, generic Fourier descriptors, and shape signature are used to extract informative features from logo images, and each set of features is fed into an individual classifier. In order to reduce recognition error, a powerful combination strategy based on the Dempster-Shafer theory is utilized to fuse the three classifiers trained on different sources of information. This combination strategy can effectively make use of diversity of base learners generated with different set of features. The recognition results of the individual classifiers are compared with those obtained from fusing the classifiers’ output, showing significant performance improvements of the proposed methodology.
 
  Address Canada; May 2013  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-38456-1 Medium  
  Area Expedition Conference AI  
  Notes HuPBA;MILAB Approved no  
  Call Number (up) Admin @ si @ BGE2013b Serial 2249  
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera edit  doi
openurl 
  Title Combining Local and Global Learners in the Pairwise Multiclass Classification Type Journal Article
  Year 2015 Publication Pattern Analysis and Applications Abbreviated Journal PAA  
  Volume 18 Issue 4 Pages 845-860  
  Keywords Multiclass classification; Pairwise approach; One-versus-one  
  Abstract Pairwise classification is a well-known class binarization technique that converts a multiclass problem into a number of two-class problems, one problem for each pair of classes. However, in the pairwise technique, nuisance votes of many irrelevant classifiers may result in a wrong class prediction. To overcome this problem, a simple, but efficient method is proposed and evaluated in this paper. The proposed method is based on excluding some classes and focusing on the most probable classes in the neighborhood space, named Local Crossing Off (LCO). This procedure is performed by employing a modified version of standard K-nearest neighbor and large margin nearest neighbor algorithms. The LCO method takes advantage of nearest neighbor classification algorithm because of its local learning behavior as well as the global behavior of powerful binary classifiers to discriminate between two classes. Combining these two properties in the proposed LCO technique will avoid the weaknesses of each method and will increase the efficiency of the whole classification system. On several benchmark datasets of varying size and difficulty, we found that the LCO approach leads to significant improvements using different base learners. The experimental results show that the proposed technique not only achieves better classification accuracy in comparison to other standard approaches, but also is computationally more efficient for tackling classification problems which have a relatively large number of target classes.  
  Address  
  Corporate Author Thesis  
  Publisher Springer London Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7541 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number (up) Admin @ si @ BGE2014 Serial 2441  
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera edit   pdf
doi  openurl
  Title Generic Subclass Ensemble: A Novel Approach to Ensemble Classification Type Conference Article
  Year 2014 Publication 22nd International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 1254 - 1259  
  Keywords  
  Abstract Multiple classifier systems, also known as classifier ensembles, have received great attention in recent years because of their improved classification accuracy in different applications. In this paper, we propose a new general approach to ensemble classification, named generic subclass ensemble, in which each base classifier is trained with data belonging to a subset of classes, and thus discriminates among a subset of target categories. The ensemble classifiers are then fused using a combination rule. The proposed approach differs from existing methods that manipulate the target attribute, since in our approach individual classification problems are not restricted to two-class problems. We perform a series of experiments to evaluate the efficiency of the generic subclass approach on a set of benchmark datasets. Experimental results with multilayer perceptrons show that the proposed approach presents a viable alternative to the most commonly used ensemble classification approaches.  
  Address Stockholm; August 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN Medium  
  Area Expedition Conference ICPR  
  Notes HuPBA;MILAB Approved no  
  Call Number (up) Admin @ si @ BGE2014b Serial 2445  
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera; Albert Clapes; Kamal Nasrollahi; Michael Holte; Thomas B. Moeslund edit  url
doi  openurl
  Title Keep it Accurate and Diverse: Enhancing Action Recognition Performance by Ensemble Learning Type Conference Article
  Year 2015 Publication IEEE Conference on Computer Vision and Pattern Recognition Worshops (CVPRW) Abbreviated Journal  
  Volume Issue Pages 22-29  
  Keywords  
  Abstract The performance of different action recognition techniques has recently been studied by several computer vision researchers. However, the potential improvement in classification through classifier fusion by ensemble-based methods has remained unattended. In this work, we evaluate the performance of an ensemble of action learning techniques, each performing the recognition task from a different perspective.
The underlying idea is that instead of aiming a very sophisticated and powerful representation/learning technique, we can learn action categories using a set of relatively simple and diverse classifiers, each trained with different feature set. In addition, combining the outputs of several learners can reduce the risk of an unfortunate selection of a learner on an unseen action recognition scenario.
This leads to having a more robust and general-applicable framework. In order to improve the recognition performance, a powerful combination strategy is utilized based on the Dempster-Shafer theory, which can effectively make use
of diversity of base learners trained on different sources of information. The recognition results of the individual classifiers are compared with those obtained from fusing the classifiers’ output, showing enhanced performance of the proposed methodology.
 
  Address Boston; EEUU; June 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes HuPBA;MILAB Approved no  
  Call Number (up) Admin @ si @ BGE2015 Serial 2655  
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera edit   pdf
doi  openurl
  Title Support Vector Machines with Time Series Distance Kernels for Action Classification Type Conference Article
  Year 2016 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 1-7  
  Keywords  
  Abstract Despite the outperformance of Support Vector Machine (SVM) on many practical classification problems, the algorithm is not directly applicable to multi-dimensional trajectories having different lengths. In this paper, a new class of SVM that is applicable to trajectory classification, such as action recognition, is developed by incorporating two efficient time-series distances measures into the kernel function.
Dynamic Time Warping and Longest Common Subsequence distance measures along with their derivatives are
employed as the SVM kernel. In addition, the pairwise proximity learning strategy is utilized in order to make use of non-positive semi-definite kernels in the SVM formulation. The proposed method is employed for a challenging classification problem: action recognition by depth cameras using only skeleton data; and evaluated on three benchmark action datasets. Experimental results demonstrate the outperformance of our methodology compared to the state-ofthe-art on the considered datasets.
 
  Address Lake Placid; NY (USA); March 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes HuPBA;MILAB; Approved no  
  Call Number (up) Admin @ si @ BGE2016a Serial 2773  
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera edit   pdf
doi  openurl
  Title Action Recognition by Pairwise Proximity Function Support Vector Machines with Dynamic Time Warping Kernels Type Conference Article
  Year 2016 Publication 29th Canadian Conference on Artificial Intelligence Abbreviated Journal  
  Volume 9673 Issue Pages 3-14  
  Keywords  
  Abstract In the context of human action recognition using skeleton data, the 3D trajectories of joint points may be considered as multi-dimensional time series. The traditional recognition technique in the literature is based on time series dis(similarity) measures (such as Dynamic Time Warping). For these general dis(similarity) measures, k-nearest neighbor algorithms are a natural choice. However, k-NN classifiers are known to be sensitive to noise and outliers. In this paper, a new class of Support Vector Machine that is applicable to trajectory classification, such as action recognition, is developed by incorporating an efficient time-series distances measure into the kernel function. More specifically, the derivative of Dynamic Time Warping (DTW) distance measure is employed as the SVM kernel. In addition, the pairwise proximity learning strategy is utilized in order to make use of non-positive semi-definite (PSD) kernels in the SVM formulation. The recognition results of the proposed technique on two action recognition datasets demonstrates the ourperformance of our methodology compared to the state-of-the-art methods. Remarkably, we obtained 89 % accuracy on the well-known MSRAction3D dataset using only 3D trajectories of body joints obtained by Kinect  
  Address Victoria; Canada; May 2016  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference AI  
  Notes HuPBA;MILAB; Approved no  
  Call Number (up) Admin @ si @ BGE2016b Serial 2770  
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera; Huamin Ren; Thomas B. Moeslund; Elham Etemad edit  url
openurl 
  Title Locality Regularized Group Sparse Coding for Action Recognition Type Journal Article
  Year 2017 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
  Volume 158 Issue Pages 106-114  
  Keywords Bag of words; Feature encoding; Locality constrained coding; Group sparse coding; Alternating direction method of multipliers; Action recognition  
  Abstract Bag of visual words (BoVW) models are widely utilized in image/ video representation and recognition. The cornerstone of these models is the encoding stage, in which local features are decomposed over a codebook in order to obtain a representation of features. In this paper, we propose a new encoding algorithm by jointly encoding the set of local descriptors of each sample and considering the locality structure of descriptors. The proposed method takes advantages of locality coding such as its stability and robustness to noise in descriptors, as well as the strengths of the group coding strategy by taking into account the potential relation among descriptors of a sample. To efficiently implement our proposed method, we consider the Alternating Direction Method of Multipliers (ADMM) framework, which results in quadratic complexity in the problem size. The method is employed for a challenging classification problem: action recognition by depth cameras. Experimental results demonstrate the outperformance of our methodology compared to the state-of-the-art on the considered datasets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no proj Approved no  
  Call Number (up) Admin @ si @ BGE2017 Serial 3014  
Permanent link to this record
 

 
Author Adela Barbulescu; Wenjuan Gong; Jordi Gonzalez; Thomas B. Moeslund; Xavier Roca edit   pdf
url  isbn
openurl 
  Title 3D Human Pose Estimation Using 2D Body Part Detectors Type Conference Article
  Year 2012 Publication 21st International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 2484 - 2487  
  Keywords  
  Abstract Automatic 3D reconstruction of human poses from monocular images is a challenging and popular topic in the computer vision community, which provides a wide range of applications in multiple areas. Solutions for 3D pose estimation involve various learning approaches, such as support vector machines and Gaussian processes, but many encounter difficulties in cluttered scenarios and require additional input data, such as silhouettes, or controlled camera settings. We present a framework that is capable of estimating the 3D pose of a person from single images or monocular image sequences without requiring background information and which is robust to camera variations. The framework models the non-linearity present in human pose estimation as it benefits from flexible learning approaches, including a highly customizable 2D detector. Results on the HumanEva benchmark show how they perform and influence the quality of the 3D pose estimates.  
  Address Tsubuka, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN 978-1-4673-2216-4 Medium  
  Area Expedition Conference ICPR  
  Notes ISE Approved no  
  Call Number (up) Admin @ si @ BGG2012 Serial 2172  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: