toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Patricia Suarez; Dario Carpio; Angel Sappa edit  url
openurl 
  Title Enhancement of guided thermal image super-resolution approaches Type Journal Article
  Year 2024 Publication Neurocomputing Abbreviated Journal NEUCOM  
  Volume 573 Issue 127197 Pages 1-17  
  Keywords  
  Abstract Guided image processing techniques are widely used to extract meaningful information from a guiding image and facilitate the enhancement of the guided one. This paper specifically addresses the challenge of guided thermal image super-resolution, where a low-resolution thermal image is enhanced using a high-resolution visible spectrum image. We propose a new strategy that enhances outcomes from current guided super-resolution methods. This is achieved by transforming the initial guiding data into a representation resembling a thermal-like image, which is more closely in sync with the intended output. Experimental results with upscale factors of 8 and 16, demonstrate the outstanding performance of our approach in guided thermal image super-resolution obtained by mapping the original guiding information to a thermal-like image representation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ SCS2024 Serial 3998  
Permanent link to this record
 

 
Author (down) Patricia Suarez; Dario Carpio; Angel Sappa edit  url
doi  openurl
  Title Depth Map Estimation from a Single 2D Image Type Conference Article
  Year 2023 Publication 17th International Conference on Signal-Image Technology & Internet-Based Systems Abbreviated Journal  
  Volume Issue Pages 347-353  
  Keywords  
  Abstract This paper presents an innovative architecture based on a Cycle Generative Adversarial Network (CycleGAN) for the synthesis of high-quality depth maps from monocular images. The proposed architecture leverages a diverse set of loss functions, including cycle consistency, contrastive, identity, and least square losses, to facilitate the generation of depth maps that exhibit realism and high fidelity. A notable feature of the approach is its ability to synthesize depth maps from grayscale images without the need for paired training data. Extensive comparisons with different state-of-the-art methods show the superiority of the proposed approach in both quantitative metrics and visual quality. This work addresses the challenge of depth map synthesis and offers significant advancements in the field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SITIS  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ SCS2023b Serial 4009  
Permanent link to this record
 

 
Author (down) Patricia Suarez; Dario Carpio; Angel Sappa edit  url
doi  openurl
  Title Boosting Guided Super-Resolution Performance with Synthesized Images Type Conference Article
  Year 2023 Publication 17th International Conference on Signal-Image Technology & Internet-Based Systems Abbreviated Journal  
  Volume Issue Pages 189-195  
  Keywords  
  Abstract Guided image processing techniques are widely used for extracting information from a guiding image to aid in the processing of the guided one. These images may be sourced from different modalities, such as 2D and 3D, or different spectral bands, like visible and infrared. In the case of guided cross-spectral super-resolution, features from the two modal images are extracted and efficiently merged to migrate guidance information from one image, usually high-resolution (HR), toward the guided one, usually low-resolution (LR). Different approaches have been recently proposed focusing on the development of architectures for feature extraction and merging in the cross-spectral domains, but none of them care about the different nature of the given images. This paper focuses on the specific problem of guided thermal image super-resolution, where an LR thermal image is enhanced by an HR visible spectrum image. To improve existing guided super-resolution techniques, a novel scheme is proposed that maps the original guiding information to a thermal image-like representation that is similar to the output. Experimental results evaluating five different approaches demonstrate that the best results are achieved when the guiding and guided images share the same domain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SITIS  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ SCS2023c Serial 4011  
Permanent link to this record
 

 
Author (down) Patricia Suarez; Angel Sappa; Dario Carpio; Henry Velesaca; Francisca Burgos; Patricia Urdiales edit   pdf
url  doi
openurl 
  Title Deep Learning Based Shrimp Classification Type Conference Article
  Year 2022 Publication 17th International Symposium on Visual Computing Abbreviated Journal  
  Volume 13598 Issue Pages 36–45  
  Keywords Pigmentation; Color space; Light weight network  
  Abstract This work proposes a novel approach based on deep learning to address the classification of shrimp (Pennaeus vannamei) into two classes, according to their level of pigmentation accepted by shrimp commerce. The main goal of this actual study is to support the shrimp industry in terms of price and process. An efficient CNN architecture is proposed to perform image classification through a program that could be set other in mobile devices or in fixed support in the shrimp supply chain. The proposed approach is a lightweight model that uses HSV color space shrimp images. A simple pipeline shows the most important stages performed to determine a pattern that identifies the class to which they belong based on their pigmentation. For the experiments, a database acquired with mobile devices of various brands and models has been used to capture images of shrimp. The results obtained with the images in the RGB and HSV color space allow for testing the effectiveness of the proposed model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ISVC  
  Notes MSIAU; no proj Approved no  
  Call Number Admin @ si @ SAC2022 Serial 3772  
Permanent link to this record
 

 
Author (down) Patricia Suarez; Angel Sappa; Boris X. Vintimilla; Riad I. Hammoud edit   pdf
doi  openurl
  Title Near InfraRed Imagery Colorization Type Conference Article
  Year 2018 Publication 25th International Conference on Image Processing Abbreviated Journal  
  Volume Issue Pages 2237 - 2241  
  Keywords Convolutional Neural Networks (CNN), Generative Adversarial Network (GAN), Infrared Imagery colorization  
  Abstract This paper proposes a stacked conditional Generative Adversarial Network-based method for Near InfraRed (NIR) imagery colorization. We propose a variant architecture of Generative Adversarial Network (GAN) that uses multiple
loss functions over a conditional probabilistic generative model. We show that this new architecture/loss-function yields better generalization and representation of the generated colored IR images. The proposed approach is evaluated on a large test dataset and compared to recent state of the art methods using standard metrics.
 
  Address Athens; Greece; October 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICIP  
  Notes MSIAU; 600.086; 600.130; 600.122 Approved no  
  Call Number Admin @ si @ SSV2018b Serial 3195  
Permanent link to this record
 

 
Author (down) Patricia Suarez; Angel Sappa; Boris X. Vintimilla; Riad I. Hammoud edit   pdf
doi  openurl
  Title Deep Learning based Single Image Dehazing Type Conference Article
  Year 2018 Publication 31st IEEE Conference on Computer Vision and Pattern Recognition Workhsop Abbreviated Journal  
  Volume Issue Pages 1250 - 12507  
  Keywords Gallium nitride; Atmospheric modeling; Generators; Generative adversarial networks; Convergence; Image color analysis  
  Abstract This paper proposes a novel approach to remove haze degradations in RGB images using a stacked conditional Generative Adversarial Network (GAN). It employs a triplet of GAN to remove the haze on each color channel independently.
A multiple loss functions scheme, applied over a conditional probabilistic model, is proposed. The proposed GAN architecture learns to remove the haze, using as conditioned entrance, the images with haze from which the clear
images will be obtained. Such formulation ensures a fast model training convergence and a homogeneous model generalization. Experiments showed that the proposed method generates high-quality clear images.
 
  Address Salt Lake City; USA; June 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes MSIAU; 600.086; 600.130; 600.122 Approved no  
  Call Number Admin @ si @ SSV2018d Serial 3197  
Permanent link to this record
 

 
Author (down) Patricia Suarez; Angel Sappa; Boris X. Vintimilla; Riad I. Hammoud edit   pdf
openurl 
  Title Image Vegetation Index through a Cycle Generative Adversarial Network Type Conference Article
  Year 2019 Publication IEEE International Conference on Computer Vision and Pattern Recognition-Workshops Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This paper proposes a novel approach to estimate the Normalized Difference Vegetation Index (NDVI) just from an RGB image. The NDVI values are obtained by using images from the visible spectral band together with a synthetic near infrared image obtained by a cycled GAN. The cycled GAN network is able to obtain a NIR image from a given gray scale image. It is trained by using unpaired set of gray scale and NIR images by using a U-net architecture and a multiple loss function (gray scale images are obtained from the provided RGB images). Then, the NIR image estimated with the proposed cycle generative adversarial network is used to compute the NDVI index. Experimental results are provided showing the validity of the proposed approach. Additionally, comparisons with previous approaches are also provided.  
  Address Long beach; California; USA; June 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes MSIAU; 600.130; 601.349; 600.122 Approved no  
  Call Number Admin @ si @ SSV2019 Serial 3272  
Permanent link to this record
 

 
Author (down) Patricia Suarez; Angel Sappa; Boris X. Vintimilla; Riad I. Hammoud edit   pdf
url  doi
openurl 
  Title Cycle Generative Adversarial Network: Towards A Low-Cost Vegetation Index Estimation Type Conference Article
  Year 2021 Publication 28th IEEE International Conference on Image Processing Abbreviated Journal  
  Volume Issue Pages 19-22  
  Keywords  
  Abstract This paper presents a novel unsupervised approach to estimate the Normalized Difference Vegetation Index (NDVI). The NDVI is obtained as the ratio between information from the visible and near infrared spectral bands; in the current work, the NDVI is estimated just from an image of the visible spectrum through a Cyclic Generative Adversarial Network (CyclicGAN). This unsupervised architecture learns to estimate the NDVI index by means of an image translation between the red channel of a given RGB image and the NDVI unpaired index’s image. The translation is obtained by means of a ResNET architecture and a multiple loss function. Experimental results obtained with this unsupervised scheme show the validity of the implemented model. Additionally, comparisons with the state of the art approaches are provided showing improvements with the proposed approach.  
  Address Anchorage-Alaska; USA; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICIP  
  Notes MSIAU; 600.130; 600.122; 601.349 Approved no  
  Call Number Admin @ si @ SSV2021b Serial 3579  
Permanent link to this record
 

 
Author (down) Patricia Suarez; Angel Sappa; Boris X. Vintimilla edit   pdf
doi  openurl
  Title Cross-Spectral Image Patch Similarity using Convolutional Neural Network Type Conference Article
  Year 2017 Publication IEEE International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The ability to compare image regions (patches) has been the basis of many approaches to core computer vision problems, including object, texture and scene categorization. Hence, developing representations for image patches have been of interest in several works. The current work focuses on learning similarity between cross-spectral image patches with a 2 channel convolutional neural network (CNN) model. The proposed approach is an adaptation of a previous work, trying to obtain similar results than the state of the art but with a lowcost hardware. Hence, obtained results are compared with both
classical approaches, showing improvements, and a state of the art CNN based approach.
 
  Address San Sebastian; Spain; May 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECMSM  
  Notes ADAS; 600.086; 600.118 Approved no  
  Call Number Admin @ si @ SSV2017a Serial 2916  
Permanent link to this record
 

 
Author (down) Patricia Suarez; Angel Sappa; Boris X. Vintimilla edit   pdf
url  openurl
  Title Learning to Colorize Infrared Images Type Conference Article
  Year 2017 Publication 15th International Conference on Practical Applications of Agents and Multi-Agent System Abbreviated Journal  
  Volume Issue Pages  
  Keywords CNN in multispectral imaging; Image colorization  
  Abstract This paper focuses on near infrared (NIR) image colorization by using a Generative Adversarial Network (GAN) architecture model. The proposed architecture consists of two stages. Firstly, it learns to colorize the given input, resulting in a RGB image. Then, in the second stage, a discriminative model is used to estimate the probability that the generated image came from the training dataset, rather than the image automatically generated. The proposed model starts the learning process from scratch, because our set of images is very di erent from the dataset used in existing pre-trained models, so transfer learning strategies cannot be used. Infrared image colorization is an important problem when human perception need to be considered, e.g, in remote sensing applications. Experimental results with a large set of real images are provided showing the validity of the proposed approach.  
  Address Porto; Portugal; June 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference PAAMS  
  Notes ADAS; MSIAU; 600.086; 600.122; 600.118 Approved no  
  Call Number Admin @ si @ Serial 2919  
Permanent link to this record
 

 
Author (down) Patricia Suarez; Angel Sappa; Boris X. Vintimilla edit   pdf
doi  openurl
  Title Infrared Image Colorization based on a Triplet DCGAN Architecture Type Conference Article
  Year 2017 Publication IEEE Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This paper proposes a novel approach for colorizing near infrared (NIR) images using Deep Convolutional Generative Adversarial Network (GAN) architectures. The proposed approach is based on the usage of a triplet model for learning each color channel independently, in a more homogeneous way. It allows a fast convergence during the training, obtaining a greater similarity between the given NIR image and the corresponding ground truth. The proposed approach has been evaluated with a large data set of NIR images and compared with a recent approach, which is also based on a GAN architecture but in this case all the
color channels are obtained at the same time.
 
  Address Honolulu; Hawaii; USA; July 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes ADAS; 600.086; 600.118 Approved no  
  Call Number Admin @ si @ SSV2017b Serial 2920  
Permanent link to this record
 

 
Author (down) Patricia Suarez; Angel Sappa; Boris X. Vintimilla edit   pdf
openurl 
  Title Colorizing Infrared Images through a Triplet Conditional DCGAN Architecture Type Conference Article
  Year 2017 Publication 19th international conference on image analysis and processing Abbreviated Journal  
  Volume Issue Pages  
  Keywords CNN in Multispectral Imaging; Image Colorization  
  Abstract This paper focuses on near infrared (NIR) image colorization by using a Conditional Deep Convolutional Generative Adversarial Network (CDCGAN) architecture model. The proposed architecture is based on the usage of a conditional probabilistic generative model. Firstly, it learns to colorize the given input image, by using a triplet model architecture that tackle every channel in an independent way. In the proposed model, the nal layer of red channel consider the infrared image to enhance the details, resulting in a sharp RGB image. Then, in the second stage, a discriminative model is used to estimate the probability that the generated image came from the training dataset, rather than the image automatically generated. Experimental results with a large set of real images are provided showing the validity of the proposed approach. Additionally, the proposed approach is compared with a state of the art approach showing better results.  
  Address Catania; Italy; September 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICIAP  
  Notes ADAS; MSIAU; 600.086; 600.122; 600.118 Approved no  
  Call Number Admin @ si @ SSV2017c Serial 3016  
Permanent link to this record
 

 
Author (down) Patricia Suarez; Angel Sappa; Boris X. Vintimilla edit   pdf
isbn  openurl
  Title Cross-spectral image dehaze through a dense stacked conditional GAN based approach Type Conference Article
  Year 2018 Publication 14th IEEE International Conference on Signal Image Technology & Internet Based System Abbreviated Journal  
  Volume Issue Pages  
  Keywords Infrared imaging; Dense; Stacked CGAN; Crossspectral; Convolutional networks  
  Abstract This paper proposes a novel approach to remove haze from RGB images using a near infrared images based on a dense stacked conditional Generative Adversarial Network (CGAN). The architecture of the deep network implemented
receives, besides the images with haze, its corresponding image in the near infrared spectrum, which serve to accelerate the learning process of the details of the characteristics of the images. The model uses a triplet layer that allows the independence learning of each channel of the visible spectrum image to remove the haze on each color channel separately. A multiple loss function scheme is proposed, which ensures balanced learning between the colors
and the structure of the images. Experimental results have shown that the proposed method effectively removes the haze from the images. Additionally, the proposed approach is compared with a state of the art approach showing better results.
 
  Address Las Palmas de Gran Canaria; November 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-5386-9385-8 Medium  
  Area Expedition Conference SITIS  
  Notes MSIAU; 600.086; 600.130; 600.122 Approved no  
  Call Number Admin @ si @ SSV2018a Serial 3193  
Permanent link to this record
 

 
Author (down) Patricia Suarez; Angel Sappa; Boris X. Vintimilla edit   pdf
url  openurl
  Title Vegetation Index Estimation from Monospectral Images Type Conference Article
  Year 2018 Publication 15th International Conference on Images Analysis and Recognition Abbreviated Journal  
  Volume 10882 Issue Pages 353-362  
  Keywords  
  Abstract This paper proposes a novel approach to estimate Normalized Difference Vegetation Index (NDVI) from just the red channel of a RGB image. The NDVI index is defined as the ratio of the difference of the red and infrared radiances over their sum. In other words, information from the red channel of a RGB image and the corresponding infrared spectral band are required for its computation. In the current work the NDVI index is estimated just from the red channel by training a Conditional Generative Adversarial Network (CGAN). The architecture proposed for the generative network consists of a single level structure, which combines at the final layer results from convolutional operations together with the given red channel with Gaussian noise to enhance
details, resulting in a sharp NDVI image. Then, the discriminative model
estimates the probability that the NDVI generated index came from the training dataset, rather than the index automatically generated. Experimental results with a large set of real images are provided showing that a Conditional GAN single level model represents an acceptable approach to estimate NDVI index.
 
  Address Povoa de Varzim; Portugal; June 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICIAR  
  Notes MSIAU; 600.086; 600.130; 600.122 Approved no  
  Call Number Admin @ si @ SSV2018c Serial 3196  
Permanent link to this record
 

 
Author (down) Patricia Suarez; Angel Sappa; Boris X. Vintimilla edit   pdf
url  openurl
  Title Deep learning-based vegetation index estimation Type Book Chapter
  Year 2021 Publication Generative Adversarial Networks for Image-to-Image Translation Abbreviated Journal  
  Volume Issue Pages 205-234  
  Keywords  
  Abstract Chapter 9  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor A.Solanki; A.Nayyar; M.Naved  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MSIAU; 600.122 Approved no  
  Call Number Admin @ si @ SSV2021a Serial 3578  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: