toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Patricia Suarez; Angel Sappa; Boris X. Vintimilla edit   pdf
isbn  openurl
  Title Cross-spectral image dehaze through a dense stacked conditional GAN based approach Type Conference Article
  Year 2018 Publication 14th IEEE International Conference on Signal Image Technology & Internet Based System Abbreviated Journal  
  Volume Issue Pages  
  Keywords Infrared imaging; Dense; Stacked CGAN; Crossspectral; Convolutional networks  
  Abstract This paper proposes a novel approach to remove haze from RGB images using a near infrared images based on a dense stacked conditional Generative Adversarial Network (CGAN). The architecture of the deep network implemented
receives, besides the images with haze, its corresponding image in the near infrared spectrum, which serve to accelerate the learning process of the details of the characteristics of the images. The model uses a triplet layer that allows the independence learning of each channel of the visible spectrum image to remove the haze on each color channel separately. A multiple loss function scheme is proposed, which ensures balanced learning between the colors
and the structure of the images. Experimental results have shown that the proposed method effectively removes the haze from the images. Additionally, the proposed approach is compared with a state of the art approach showing better results.
 
  Address Las Palmas de Gran Canaria; November 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-5386-9385-8 Medium  
  Area Expedition Conference SITIS  
  Notes MSIAU; 600.086; 600.130; 600.122 Approved no  
  Call Number Admin @ si @ SSV2018a Serial 3193  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: