toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Ruben Tito; Minesh Mathew; C.V. Jawahar; Ernest Valveny; Dimosthenis Karatzas edit   pdf
url  openurl
  Title ICDAR 2021 Competition on Document Visual Question Answering Type Conference Article
  Year 2021 Publication 16th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 635-649  
  Keywords  
  Abstract In this report we present results of the ICDAR 2021 edition of the Document Visual Question Challenges. This edition complements the previous tasks on Single Document VQA and Document Collection VQA with a newly introduced on Infographics VQA. Infographics VQA is based on a new dataset of more than 5, 000 infographics images and 30, 000 question-answer pairs. The winner methods have scored 0.6120 ANLS in Infographics VQA task, 0.7743 ANLSL in Document Collection VQA task and 0.8705 ANLS in Single Document VQA. We present a summary of the datasets used for each task, description of each of the submitted methods and the results and analysis of their performance. A summary of the progress made on Single Document VQA since the first edition of the DocVQA 2020 challenge is also presented.  
  Address VIRTUAL; Lausanne; Suissa; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ TMJ2021 Serial 3624  
Permanent link to this record
 

 
Author (down) Ruben Tito; Khanh Nguyen; Marlon Tobaben; Raouf Kerkouche; Mohamed Ali Souibgui; Kangsoo Jung; Lei Kang; Ernest Valveny; Antti Honkela; Mario Fritz; Dimosthenis Karatzas edit   pdf
url  openurl
  Title Privacy-Aware Document Visual Question Answering Type Miscellaneous
  Year 2023 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Document Visual Question Answering (DocVQA) is a fast growing branch of document understanding. Despite the fact that documents contain sensitive or copyrighted information, none of the current DocVQA methods offers strong privacy guarantees.
In this work, we explore privacy in the domain of DocVQA for the first time. We highlight privacy issues in state of the art multi-modal LLM models used for DocVQA, and explore possible solutions.
Specifically, we focus on the invoice processing use case as a realistic, widely used scenario for document understanding, and propose a large scale DocVQA dataset comprising invoice documents and associated questions and answers. We employ a federated learning scheme, that reflects the real-life distribution of documents in different businesses, and we explore the use case where the ID of the invoice issuer is the sensitive information to be protected.
We demonstrate that non-private models tend to memorise, behaviour that can lead to exposing private information. We then evaluate baseline training schemes employing federated learning and differential privacy in this multi-modal scenario, where the sensitive information might be exposed through any of the two input modalities: vision (document image) or language (OCR tokens).
Finally, we design an attack exploiting the memorisation effect of the model, and demonstrate its effectiveness in probing different DocVQA models.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ PNT2023 Serial 4012  
Permanent link to this record
 

 
Author (down) Ruben Tito; Dimosthenis Karatzas; Ernest Valveny edit   pdf
url  openurl
  Title Document Collection Visual Question Answering Type Conference Article
  Year 2021 Publication 16th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 12822 Issue Pages 778-792  
  Keywords Document collection; Visual Question Answering  
  Abstract Current tasks and methods in Document Understanding aims to process documents as single elements. However, documents are usually organized in collections (historical records, purchase invoices), that provide context useful for their interpretation. To address this problem, we introduce Document Collection Visual Question Answering (DocCVQA) a new dataset and related task, where questions are posed over a whole collection of document images and the goal is not only to provide the answer to the given question, but also to retrieve the set of documents that contain the information needed to infer the answer. Along with the dataset we propose a new evaluation metric and baselines which provide further insights to the new dataset and task.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ TKV2021 Serial 3622  
Permanent link to this record
 

 
Author (down) Ruben Tito; Dimosthenis Karatzas; Ernest Valveny edit   pdf
doi  openurl
  Title Hierarchical multimodal transformers for Multi-Page DocVQA Type Journal Article
  Year 2023 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 144 Issue Pages 109834  
  Keywords  
  Abstract Document Visual Question Answering (DocVQA) refers to the task of answering questions from document images. Existing work on DocVQA only considers single-page documents. However, in real scenarios documents are mostly composed of multiple pages that should be processed altogether. In this work we extend DocVQA to the multi-page scenario. For that, we first create a new dataset, MP-DocVQA, where questions are posed over multi-page documents instead of single pages. Second, we propose a new hierarchical method, Hi-VT5, based on the T5 architecture, that overcomes the limitations of current methods to process long multi-page documents. The proposed method is based on a hierarchical transformer architecture where the encoder summarizes the most relevant information of every page and then, the decoder takes this summarized information to generate the final answer. Through extensive experimentation, we demonstrate that our method is able, in a single stage, to answer the questions and provide the page that contains the relevant information to find the answer, which can be used as a kind of explainability measure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.155; 600.121 Approved no  
  Call Number Admin @ si @ TKV2023 Serial 3825  
Permanent link to this record
 

 
Author (down) Ruben Tito; Dimosthenis Karatzas; Ernest Valveny edit   pdf
url  openurl
  Title Hierarchical multimodal transformers for Multipage DocVQA Type Journal Article
  Year 2023 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 144 Issue 109834 Pages  
  Keywords  
  Abstract Existing work on DocVQA only considers single-page documents. However, in real applications documents are mostly composed of multiple pages that should be processed altogether. In this work, we propose a new multimodal hierarchical method Hi-VT5, that overcomes the limitations of current methods to process long multipage documents. In contrast to previous hierarchical methods that focus on different semantic granularity (He et al., 2021) or different subtasks (Zhou et al., 2022) used in image classification. Our method is a hierarchical transformer architecture where the encoder learns to summarize the most relevant information of every page and then, the decoder uses this summarized representation to generate the final answer, following a bottom-up approach. Moreover, due to the lack of multipage DocVQA datasets, we also introduce MP-DocVQA, an extension of SP-DocVQA where questions are posed over multipage documents instead of single pages. Through extensive experimentation, we demonstrate that Hi-VT5 is able, in a single stage, to answer the questions and provide the page that contains the answer, which can be used as a kind of explainability measure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ TKV2023 Serial 3836  
Permanent link to this record
 

 
Author (down) Ruben Perez Tito edit  isbn
openurl 
  Title Exploring the role of Text in Visual Question Answering on Natural Scenes and Documents Type Book Whole
  Year 2023 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Visual Question Answering (VQA) is the task where given an image and a natural language question, the objective is to generate a natural language answer. At the intersection between computer vision and natural language processing, this task can be seen as a measure of image understanding capabilities, as it requires to reason about objects, actions, colors, positions, the relations between the different elements as well as commonsense reasoning, world knowledge, arithmetic skills and natural language understanding. However, even though the text present in the images conveys important semantically rich information that is explicit and not available in any other form, most VQA methods remained illiterate, largely
ignoring the text despite its potential significance. In this thesis, we set out on a journey to bring reading capabilities to computer vision models applied to the VQA task, creating new datasets and methods that can read, reason and integrate the text with other visual cues in natural scene images and documents.
In Chapter 3, we address the combination of scene text with visual information to fully understand all the nuances of natural scene images. To achieve this objective, we define a new sub-task of VQA that requires reading the text in the image, and highlight the limitations of the current methods. In addition, we propose a new architecture that integrates both modalities and jointly reasons about textual and visual features. In Chapter 5, we shift the domain of VQA with reading capabilities and apply it on scanned industry document images, providing a high-level end-purpose perspective to Document Understanding, which has been
primarily focused on digitizing the document’s contents and extracting key values without considering the ultimate purpose of the extracted information. For this, we create a dataset which requires methods to reason about the unique and challenging elements of documents, such as text, images, tables, graphs and complex layouts, to provide accurate answers in natural language. However, we observed that explicit visual features provide a slight contribution in the overall performance, since the main information is usually conveyed within the text and its position. In consequence, in Chapter 6, we propose VQA on infographic images, seeking for document images with more visually rich elements that require to fully exploit visual information in order to answer the questions. We show the performance gap of
different methods when used over industry scanned and infographic images, and propose a new method that integrates the visual features in early stages, which allows the transformer architecture to exploit the visual features during the self-attention operation. Instead, in Chapter 7, we apply VQA on a big collection of single-page documents, where the methods must find which documents are relevant to answer the question, and provide the answer itself. Finally, in Chapter 8, mimicking real-world application problems where systems must process documents with multiple pages, we address the multipage document visual question answering task. We demonstrate the limitations of existing methods, including models specifically designed to process long sequences. To overcome these limitations, we propose
a hierarchical architecture that can process long documents, answer questions, and provide the index of the page where the information to answer the question is located as an explainability measure.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Ernest Valveny  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-124793-5-5 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ Per2023 Serial 3967  
Permanent link to this record
 

 
Author (down) Ruben Ballester; Xavier Arnal Clemente; Carles Casacuberta; Meysam Madadi; Ciprian Corneanu edit   pdf
openurl 
  Title Towards explaining the generalization gap in neural networks using topological data analysis Type Miscellaneous
  Year 2022 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Understanding how neural networks generalize on unseen data is crucial for designing more robust and reliable models. In this paper, we study the generalization gap of neural networks using methods from topological data analysis. For this purpose, we compute homological persistence diagrams of weighted graphs constructed from neuron activation correlations after a training phase, aiming to capture patterns that are linked to the generalization capacity of the network. We compare the usefulness of different numerical summaries from persistence diagrams and show that a combination of some of them can accurately predict and partially explain the generalization gap without the need of a test set. Evaluation on two computer vision recognition tasks (CIFAR10 and SVHN) shows competitive generalization gap prediction when compared against state-of-the-art methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no menciona Approved no  
  Call Number Admin @ si @ BAC2022 Serial 3821  
Permanent link to this record
 

 
Author (down) Ruben Ballester; Carles Casacuberta; Sergio Escalera edit   pdf
url  openurl
  Title Decorrelating neurons using persistence Type Miscellaneous
  Year 2023 Publication ARXIV Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract We propose a novel way to improve the generalisation capacity of deep learning models by reducing high correlations between neurons. For this, we present two regularisation terms computed from the weights of a minimum spanning tree of the clique whose vertices are the neurons of a given network (or a sample of those), where weights on edges are correlation dissimilarities. We provide an extensive set of experiments to validate the effectiveness of our terms, showing that they outperform popular ones. Also, we demonstrate that naive minimisation of all correlations between neurons obtains lower accuracies than our regularisation terms, suggesting that redundancies play a significant role in artificial neural networks, as evidenced by some studies in neuroscience for real networks. We include a proof of differentiability of our regularisers, thus developing the first effective topological persistence-based regularisation terms that consider the whole set of neurons and that can be applied to a feedforward architecture in any deep learning task such as classification, data generation, or regression.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ BCE2023 Serial 3977  
Permanent link to this record
 

 
Author (down) Rozenn Dhayot; Fernando Vilariño; Gerard Lacey edit  doi
openurl 
  Title Improving the Quality of Color Colonoscopy Videos Type Journal Article
  Year 2008 Publication EURASIP Journal on Image and Video Processing Abbreviated Journal EURASIP JIVP  
  Volume 139429 Issue 1 Pages 1-9  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area 800 Expedition Conference  
  Notes MV;SIAI Approved no  
  Call Number fernando @ fernando @ Serial 2422  
Permanent link to this record
 

 
Author (down) Rosa Maria Ortiz; Debora Gil; Elisa Minchole; Marta Diez-Ferrer; Noelia Cubero de Frutos edit   pdf
openurl 
  Title Classification of Confolcal Endomicroscopy Patterns for Diagnosis of Lung Cancer Type Conference Article
  Year 2017 Publication 18th World Conference on Lung Cancer Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Confocal Laser Endomicroscopy (CLE) is an emerging imaging technique that allows the in-vivo acquisition of cell patterns of potentially malignant lesions. Such patterns could discriminate between inflammatory and neoplastic lesions and, thus, serve as a first in-vivo biopsy to discard cases that do not actually require a cell biopsy.

The goal of this work is to explore whether CLE images obtained during videobronchoscopy contain enough visual information to discriminate between benign and malign peripheral lesions for lung cancer diagnosis. To do so, we have performed a pilot comparative study with 12 patients (6 adenocarcinoma and 6 benign-inflammatory) using 2 different methods for CLE pattern analysis: visual analysis by 3 experts and a novel methodology that uses graph methods to find patterns in pre-trained feature spaces. Our preliminary results indicate that although visual analysis can only achieve a 60.2% of accuracy, the accuracy of the proposed unsupervised image pattern classification raises to 84.6%.

We conclude that CLE images visual information allow in-vivo detection of neoplastic lesions and graph structural analysis applied to deep-learning feature spaces can achieve competitive results.
 
  Address Yokohama; Japan; October 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IASLC WCLC  
  Notes IAM; 600.096; 600.075; 600.145 Approved no  
  Call Number Admin @ si @ OGM2017 Serial 3044  
Permanent link to this record
 

 
Author (down) Roger Max Calle Quispe; Maya Aghaei Gavari; Eduardo Aguilar Torres edit  url
openurl 
  Title Towards real-time accurate safety helmets detection through a deep learning-based method Type Journal
  Year 2023 Publication Ingeniare. Revista chilena de ingenieria Abbreviated Journal  
  Volume 31 Issue 12 Pages  
  Keywords  
  Abstract Occupational safety is a fundamental activity in industries and revolves around the management of the necessary controls that must be present to mitigate occupational risks. These controls include verifying the use of Personal Protection Equipment (PPE). Within PPE, safety helmets are vital to reducing severe or fatal consequences caused by head injuries. This problem has been addressed recently by various research based on deep learning to detect the usage of safety helmets by the present people in the industrial field.

These works have achieved promising results for safety helmet detection using object detection methods from the YOLO family. In this work, we propose to analyze the performance of Scaled-YOLOv4, a novel model of the YOLO family that has yet to be previously studied for this problem. The performance of the Scaled-YOLOv4 is evaluated on two public databases, carefully selected among the previously proposed datasets for the occupational safety framework. We demonstrate the superiority of Scaled-YOLOv4 in terms of mAP and Fl-score concerning the previous works for both databases. Further, we summarize the currently available datasets for safety helmet detection purposes and discuss their suitability.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ CAA2023 Serial 3846  
Permanent link to this record
 

 
Author (down) Roberto Morales; Juan Quispe; Eduardo Aguilar edit  url
doi  openurl
  Title Exploring multi-food detection using deep learning-based algorithms Type Conference Article
  Year 2023 Publication 13th International Conference on Pattern Recognition Systems Abbreviated Journal  
  Volume Issue Pages 1-7  
  Keywords  
  Abstract People are becoming increasingly concerned about their diet, whether for disease prevention, medical treatment or other purposes. In meals served in restaurants, schools or public canteens, it is not easy to identify the ingredients and/or the nutritional information they contain. Currently, technological solutions based on deep learning models have facilitated the recording and tracking of food consumed based on the recognition of the main dish present in an image. Considering that sometimes there may be multiple foods served on the same plate, food analysis should be treated as a multi-class object detection problem. EfficientDet and YOLOv5 are object detection algorithms that have demonstrated high mAP and real-time performance on general domain data. However, these models have not been evaluated and compared on public food datasets. Unlike general domain objects, foods have more challenging features inherent in their nature that increase the complexity of detection. In this work, we performed a performance evaluation of Efficient-Det and YOLOv5 on three public food datasets: UNIMIB2016, UECFood256 and ChileanFood64. From the results obtained, it can be seen that YOLOv5 provides a significant difference in terms of both mAP and response time compared to EfficientDet in all datasets. Furthermore, YOLOv5 outperforms the state-of-the-art on UECFood256, achieving an improvement of more than 4% in terms of mAP@.50 over the best reported.  
  Address Guayaquil; Ecuador; July 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPRS  
  Notes MILAB Approved no  
  Call Number Admin @ si @ MQA2023 Serial 3843  
Permanent link to this record
 

 
Author (down) Robert Benavente; Ramon Baldrich; M.C. Olive; Maria Vanrell edit  openurl
  Title Colour Naming Considering the Colour Variability Problem. Type Miscellaneous
  Year 2000 Publication Computacion y Sistemas, 4(1):30–43. Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number CAT @ cat @ BBO2000 Serial 242  
Permanent link to this record
 

 
Author (down) Robert Benavente; Maria Vanrell; Ramon Baldrich edit  openurl
  Title Estimation of Fuzzy Sets for Computational Colour Categorization Type Journal
  Year 2004 Publication Color Research and Application, 29(5):342–353 (IF: 0.739) Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number CAT @ cat @ BVB2004 Serial 484  
Permanent link to this record
 

 
Author (down) Robert Benavente; Maria Vanrell; Ramon Baldrich edit  url
openurl 
  Title A data set for fuzzy colour naming Type Journal
  Year 2006 Publication Color Research & Application, 31(1):48–56 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number CAT @ cat @ BVB2006 Serial 590  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: