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Abstract

Document Visual Question Answering (DocVQA) is a
fast growing branch of document understanding. Despite
the fact that documents contain sensitive or copyrighted
information, none of the current DocVQA methods offers
strong privacy guarantees.

In this work, we explore privacy in the domain of
DocVQA for the first time. We highlight privacy issues in
state of the art multi-modal LLM models used for DocVQA,
and explore possible solutions.

Specifically, we focus on the invoice processing use case
as a realistic, widely used scenario for document under-
standing, and propose a large scale DocVQA dataset com-
prising invoice documents and associated questions and
answers. We employ a federated learning scheme, that
reflects the real-life distribution of documents in different
businesses, and we explore the use case where the ID of the
invoice issuer is the sensitive information to be protected.

We demonstrate that non-private models tend to memo-
rise, behaviour that can lead to exposing private informa-
tion. We then evaluate baseline training schemes employ-
ing federated learning and differential privacy in this multi-
modal scenario, where the sensitive information might be
exposed through any of the two input modalities: vision
(document image) or language (OCR tokens).

Finally, we design an attack exploiting the memorisa-
tion effect of the model, and demonstrate its effectiveness
in probing different DocVQA models.
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Question: What is the provider of this document?
GT Answer: WMTW
Non-private Model: WMTW
Private Model: Meredith Thompson

Figure 1. The risk of malicious attacks on trained DocVQA
models, such as exploiting memorization, is evident in the PFL-
DocVQA dataset. Adversaries can cue the model through the vi-
sual modality, to invoke memory and reveal sensitive information
that is not explicitly in the document (e.g. in this example the
provider’s name). We show how this behaviour can be exploited
to attack the models, and take first steps to mitigate the problem.

1. Introduction

Automatic processing of documents enables the vast major-
ity of daily interactions with and between institutions. From
a research viewpoint, document understanding is a multi-
modal endeavour combining reading systems and the vi-
sual analysis of document images with language processing
and, more recently, language-based interaction. Document
Visual Question Answering (DocVQA) was introduced in
2019 [36, 37] and quickly reshaped the state of the art, by
introducing specialised, large scale, multi-modal LLMs for
document understanding [22, 44, 64].

Despite the fact that documents contain sensitive or
copyrighted information, none of the current DocVQA
methods offers strong privacy guarantees. On the contrary,
such models tend to memorise information, and often hal-
lucinate responses drawing information from their training
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data, as illustrated in Fig 1.
Privacy-preserving methods have advanced considerably

over the past decade, nevertheless the DocVQA scenario
presents important challenges to overcome. On one hand,
privacy-preserving methods are not specifically designed
for multi-modal scenarios, where the sensitive information
might be exposed through any of the input modalities, or a
combination of them. On the other hand, the models em-
ployed for DocVQA tend to be large and cumbersome, and
require long pre-training and fine-tuning stages.

Moreover, documents in real-life cannot be freely ex-
changed. More often than not, different entities have access
to distinct sets of documents that cannot be shared due to
legal reasons. As a result, most document analysis datasets
tend to be small, or focus on non-realistic, out of copyright
document collections. Collaborative learning approaches,
that do not require centralising the training data, are a valid
alternative that would allow exploiting real-life data; never-
theless, such methods are not currently used by the docu-
ment analysis community.

In this work, we highlight privacy issues in state of the
art multimodal LLM models used for DocVQA, and pro-
pose possible solutions. In addition, we employ a federated
scheme for learning, that reflects the real-life distribution of
documents.

A typical real-life widely employed scenario for docu-
ment understanding methods is invoice processing. Typ-
ically service providers issue invoices to clients, who use
automated tools to extract information and take appropri-
ate actions. We exploit this scenario and focus on the
case where the sensitive information is the invoice provider.
This information can potentially be exposed through vision
(logo, layout of the invoice, colour scheme used, etc) and /
or language (the provider’s name, their vat number, address,
telephone or any other identifying information in the textual
part of the document). In this scenario, different clients re-
ceive invoices from distinct providers, highlighting the un-
balanced and non i.i.d. distribution of data in the real world,
in terms of invoice providers.

In this work we explore the application of privacy-
preserving methods for fine-tuning a pre-trained state-of-
the-art DocVQA model in a federated setting. Specifically,
our contributions are:
• We put forward a new dataset for private, federated,

DocVQA, focused on the real-life scenario of invoice pro-
cessing

• We demonstrate that state-of-the-art non-private models
exhibit a memorisation effect, that can lead to exposing
sensitive information, and can be used to attack the model

• We design a series of attacks exploiting the memorisation
behaviour of the models.

• We evaluate different training methods employing Feder-
ated Learning (FL) and Differential Privacy (DP) to train

a SoA DocVQA model with privacy guarantees. We eval-
uate these methods using our proposed attacks, and show
that FL+DP can mitigate privacy issues to certain degree.

2. Related Work
Document Visual Question Answering. DocVQA has
gained a lot of attention as a unified approach based on
answering natural language questions to extract informa-
tion from documents. Consequently, many datasets are
nowadays available tackling different domains and chal-
lenges such as industry documents [36, 37, 56, 57], in-
fographics [38], multidomain [59, 60], open-ended ques-
tions [53], multilingual [45], multipage [57] or collections
of documents [55]. Despite the existence of many small
and medium sized datasets one of the major challenges is
still the lack of a large scale generic dataset that can be used
for multiple scenarios. One of the main reasons for that is
the sensitive content of many documents and the copyright
issues they are subject to, that prevent most document hold-
ers from publicly releasing their data. In this direction, we
believe that our proposal based on federated learning along
with privacy-preserving methods can be a way to facilitate
the use of distributed and/or private datasets among differ-
ent entities.

Existing models for DocVQA have evolved from text-
only span-prediction models [11], to multimodal generative
methods [22, 44, 64] that leverage different self-supervised
pretraining tasks to align all the modalities over large scale
datasets. Following this trend we will use VisualT5 (VT5),
a multimodal generative method that has a strong perfor-
mance on the DocVQA task, while it is easy to fine-tune
allowing us to focus on federated learning and privacy-
preserving techniques on multimodal data.
Differentially Private Federated Learning. Federated
Learning (FL) [39, 48], allows collaborative model train-
ing among several entities (also known as clients) without
sharing the entire data set of a client. Instead, only the
trained model and its updates are shared between a cen-
tral server and the different clients. Even though federated
learning is more private than the centralized approach, many
attacks have shown that a significant amount of informa-
tion can still be inferred from the updates/models shared
between the clients and the server during training or after-
wards [41, 42, 68]. Adversaries can be either a participant,
the server, or an external entity with access to the released
trained model. The so-called gradient inversion attack aims
at reconstructing the records included in the dataset of a
client [15, 17, 32, 34, 41, 61, 67, 68]. Moreover, property
inference attacks [26, 41] can be used to determine whether
a property about a group of people is included in the client’s
dataset. Another type of attack is to infer whether a specific
record is included in the dataset of a client, which is called
membership inference [7, 42, 49]. Recently, membership



inference attacks for multi-modal models [21, 27] have been
proposed. Both attacks use a pre-trained image-text model
to identify matching pairs, but these attacks are not appli-
cable to our DocVQA setting. In our work we aim to iden-
tify group membership (whether a provider is included in
the dataset) in contrast to identifying specific items (docu-
ments in our case). In addition, our attack testing dataset,
unlike previous methods, excludes explicit training set data
and only includes data from the targeted group’s distribu-
tion, providing a more realistic evaluation of membership
inference.

In order to mitigate privacy attacks, Differential Privacy
(DP) [14] has emerged as the gold standard for formaliz-
ing privacy guarantees. However, DP introduces a trade-
off between utility and privacy as model training under DP
requires clipping updates and adding random noise, which
have an impact on the accuracy of the model. The cur-
rent SOTA approaches for training large models with high
utility under DP rely on transfer learning and utilize mod-
els pretrained on large public datasets that are then fine-
tuned [65] on private datasets. These approaches have been
shown to be effective in multiple domains where large pub-
lic datasets are available such as NLP [33, 66] and com-
puter vision [9, 10, 30, 40] even when the private dataset is
small [58]. Parameter-efficient fine-tuning [19] using adap-
tors such as LoRA [20] has been shown to be competitive in
(federated) transfer learning under DP [58, 66]. Similarly,
compression techniques decrease the size of the model or its
updates, thus reducing the sensitivity and consequent noise
introduced by DP [24, 25].

3. PFL-DocVQA Dataset
The PFL-DocVQA dataset is designed to perform DocVQA
in a federated learning and differential privacy set-up. It
is the first dataset for privacy-aware DocVQA that aims to
address privacy leakage issues in a realistic scenario. The
dataset comprises invoice document images along with their
OCR transcriptions and a set of question/answer pairs. In
our setting, the sensitive data that needs to be protected is
the information related to the invoices’ provider. Therefore,
a malicious attack should not be able to exploit the trained
model to reveal sensitive provider information or to dis-
cover if invoices from a particular provider were included
in the training set.

The current version of the PFL-DocVQA dataset con-
tains a total of 336, 842 question-answer pairs framed on
117, 661 pages of 37, 669 documents from 6, 574 differ-
ent invoice providers. The document images used in the
dataset are sourced from the DocILE dataset [50], which
is designed for Key Information Localization and Extrac-
tion (KILE). The DocILE dataset comprises 939, 147 real
business documents from public data sources [62, 63], out
of which 6, 680 are annotated with key-value pairs (i.e.,
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Figure 2. Distribution of providers and documents across different
groups and splits. Every bar represents a specific provider, which
contains a set of documents. The BLUE dataset is used for training
the models, while the RED data is used for the attacks.

a unique identifier (key) associated with a corresponding
piece of data (value) within the document). We verified the
annotations of the DocILE dataset to avoid OCR errors in
the provider name and omitted samples that did not spec-
ify the provider’s name. This resulted in using 4, 968 of
the DocILE annotated documents. We extended this anno-
tated set by labeling an additional set of 32, 701 documents.
The key-value annotation of the invoices was done through
Amazon Key-Information extraction tool [3], and was man-
ually verified to guarantee its accuracy. Finally, we grouped
documents by provider in a semi-automatic way.

The key-value pairs were used to construct the ques-
tions and answers of the PFL-DocVQA dataset. Questions
are formed to inquire about the key, and the answers are
the corresponding values. Questions are generated semi-
automatically, by defining multiple templates for each key,
and further rephrasing them using a LLM [43] to achieve
linguistic variability. 20 templates are defined for each key.
For each key-value pair in the dataset, we randomly select
one template to create the final question-answer pairs.

To facilitate the development and evaluation of privacy
attacks, the PFL-DocVQA is composed of two parts, or
sub-datasets, a base dataset to train and evaluate models
and an extension dataset that is used for membership infer-
ence attacks of these models. We refer to the base dataset
as the “BLUE” dataset and to the extension dataset as the
“RED” dataset. To construct the RED and BLUE datasets
we split the providers into in-distribution Din and out-of-
distribution Dout, where Din are the providers seen during
training and Dout are the providers that were not seen.

The BLUE data consists of a training set that is divided
among N clients (in our case we use N = 10), a validation
set and a test set. The training set of each of the N clients



contains invoices sampled from a different subset of Din

providers, resulting in a highly non i.i.d. distribution. The
BLUE validation includes documents with Din distribution.
In the BLUE test set, we include documents from both Din

and Dout providers.
The RED dataset is created by selecting half of its docu-

ments as Din providers (RED positive documents), i.e. doc-
uments from providers that appear in the BLUE training
data. The other half of the RED data consists of documents
from Dout providers (RED negative documents), i.e. docu-
ments from providers not used for the BLUE training data.
RED data is split into a training and test set. The different
sets and clients of PFL-DocVQA are illustrated in Figure 2.
We also provide more details in the supplementary material.

4. Baseline DocVQA Model
4.1. Document VQA

The DocVQA task is defined as the process wherein: given
a question qi asked over a document image di, the method
fθ must predict the correct answer ai. We will refer to I =
{(di, qi, ai))} as the set of valid input tuples.

Mainstream DocVQA methods include generative mod-
els based on language model architectures, where a model
fθ is trained by minimizing the loss function: L(θ) =
− log pθ(ai|di, qi). In the inference step, it is assumed that
the model can provide the answer ai along with a confi-
dence score conf i based on pθ(ai|di, qi).

To evaluate the DocVQA task, in addition to standard ac-
curacy, we use the ANLS metric introduced in [4, 5] which
is a soft version of Accuracy (ACC) that smoothly penal-
izes OCR errors during the text recognition step based on
the Normalized Levenshtein Similarity (NLS).

4.2. The Visual T5 Model

As a baseline for the DocVQA task we make use of a multi-
modal generative model named Visual T5 (VT5), a simpli-
fied version of the Hi-VT5 [57] that leverages well-known
existing state-of-the-art methods. The adoption of a multi-
modal approach allows us to exploit the different modali-
ties, but it introduces the challenge of safeguarding private
information across these modalities. Additionally, as a gen-
erative method, VT5 can produce a wide range of text, not
limiting responses to predefined categories, thus making the
preservation of sensitive information more challenging.

The backbone is based on T5 [46] augmented with spa-
tial information, and visual features from document images
encoded with DiT [31]. As shown in Fig. 3, the tokenized
question, OCR tokens and encoded image patches are con-
catenated and fed into the encoder-decoder model to gener-
ate the answer following an autoregressive mechanism.

The T5 backbone is initialized with pretrained weights
on the C4 dataset [46] and the visual DiT is initialized with

What is the average per acre cost 
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Figure 3. Architecture of the baseline method.

pre-trained weights for document classification. We call
this initial model zero-shot baseline, VT50. Then, we fine-
tune the model on the Single Page DocVQA (SP-DocVQA)
dataset [36, 37] for ten epochs. We call this model central-
ized non-DP model, VT5C.

5. Provider Membership Inference Attack
In this section we emphasize the privacy risks of the pro-
posed DocVQA task in the real-world scenario where mod-
els have access to sensitive information. First, we demon-
strate the vulnerability of the centralized non-private model
VT5C to leak private training data through memorizing spe-
cific information of the provider, where overfitting is known
to play a relevant role. Then, we propose different ap-
proaches to attack the model privacy via provider member-
ship inference, that aims at differentiating the models’ be-
havior between providers seen and not seen during training.

Model RED RED Positive RED Negative
∆ACC ∆ANLSACC ANLS ACC ANLS ACC ANLS

VT50 37.72 43.66 37.62 44.10 37.84 43.18 0.22 0.92
VT5C 81.40 90.17 85.92 93.68 76.53 86.48 9.39 7.20

Table 1. DocVQA Performance of Non-Private Models on
RED. Metrics are reported in percentage. ∆ indicates the differ-
ence between RED Positive/Negative.

5.1. Memorization Test

Table 1 shows the performance of the zero-shot baseline
VT50 and the centralised non-DP model VT5C on the RED
test set. VT50 shows no performance difference between the
RED positive set (documents from providers in Din), and
the RED negative set (documents from providers in Dout).
At the same time, VT5C shows considerable performance
difference, indicating that the model overfits to a certain de-
gree when trained on the PFL-DocVQA dataset. We hy-
pothesize that this is caused mainly by memorization.



Model
RED Positive RED Negative

conf ≥ 0.9 conf ≥ 0.9
ACC ANLS ACC ANLS ACC ANLS ACC ANLS

VT50 0.08 1.60 0 1.16 0.09 0.68 0 0.72
VT5C 3.55 11.64 4.66 14.53 0.17 5.05 0 6.60

Table 2. DocVQA Performance of Non-Private Models on
Memorization Test. All information related to provider name are
removed from input.

There have been extensive works [8, 23, 54] that study
the memorization of training data for language models, yet
this behavior of such models in multi-modal settings re-
mains under-explored. We thus perform a series of exper-
iments on the RED data to demonstrate the existence of
memorized information after fine-tuning on PFL-DocVQA.

Particularly, we assume that a model that memorizes in-
formation should be able to produce the correct answer,
even if the answer is not present in the input. Thus, we
ask the model a question about a specific key-value pair
while removing all the clues related to the answer from both
modalities (image and text). Then, we consider that all cor-
rect answers are due to memorization.

We focus the experiments on generic keys of each
provider e.g. name, email, tax number, etc. that are con-
stant in all provider’s documents and thus, more likely to be
memorized. Tab. 2 shows the results with provider name
as the key of interest. For more details of the test and re-
sults with different keys, please refer to the supplementary
material.

Tab. 2 shows that while the VT5C model fails to predict
the name of providers in the RED Negative data, it achieves
around 3.5% Accuracy (4.6% when highly confident) in the
RED Positive data even when no relevant information about
the answer is available. Given its generative nature, this be-
havior suggests that the knowledge about these RED Posi-
tive providers is actually stored inside the model after fine-
tuning. The memorization effect is further confirmed by
the 0% accuracy of model VT50 in zero-shot setting, which
confirms that this particular knowledge was not present in
the model before fine-tuning.

5.2. Attack strategies

5.2.1 Generic Attack Formulation

A Provider Membership Inference Attack (PMIA) is a
binary classification task that attempts to infer whether a
specific provider P contributes its data to the training set
of a PFL-DocVQA target model. The attacker, owning a
set of non-training documents from the provider distribution
DP , can query the target model h multiple times, each with
one input tuple (di, qi, ai) from the set of possible inputs
IP , as defined in section 4.1, and in return receive a set of
outputs OP . Then, the attack model A aggregates all of

these outputs into a feature vector fP = AGG(OP ), where
AGG is the feature aggregation function, and produces a
binary prediction A(fP ;h) ∈ {0; 1}, indicating if P comes
from the training set.

Unlike prior works such as in [41, 42, 49, 52], where
attacks are evaluated directly on training examples, in this
case we assume query data can not be exactly the one used
in training, but sampled from DP .

5.2.2 Metric Selection

We base our attacks on a variety of selected per-example
metrics that reflect statistics of specific behaviours of the
model, which can in turn be used to distinguish training data
from non-training data. The combination of these metrics
provides a good descriptor to identify membership.

The reason is threefold, highlighting the limitations of
existing Membership Inference Attacks (MIAs) when ex-
tended to PMIA: first, DocVQA is a more-than-two-modal
task, thus existing approaches such as [21] are not directly
applicable to DocVQA models. Second, to train an attack
model, MIAs typically involve repeatedly training shadow
models [42] which is too expensive for DocVQA. Third,
metric-based attacks are computationally efficient with a
simple attack model and thus, fit in scenarios where re-
sources are limited and can serve as a good baseline for
future research.

We categorize our metrics into different groups Gi:
• G1 = (ACC,NLS), G2 = (L, conf ) are DocVQA utility

metrics introduced in Sec. 4.1. In general, models tend
to yield higher utility metrics for data sampled from their
training set, and this observation forms the basis for many
state-of-the-art MIAs [49, 52].

• G3 = (∆L,∆conf ) are computed as the difference of
the respective utility metrics of the model before and after
fine-tuning. Intuitively, we expect to see higher values for
this group of metrics for providers who are part of the
training data.

• G4 = (NLSmem,∆NLSmem) are two metrics inspired
from Sec. 5.1. NLSmem indicates the model’s NLS score
in the Memorization Test. ∆NLSmem is designed in an-
other test, where we first let the model generate the most
likely output given no query. We then measure how much
the output changes if we remove it from the input and test
the model again in the same setting. If it remains similar,
this is a sign of memorization.

5.2.3 Proposed Approaches

We propose two attack settings based on the knowledge the
attacker has about the model and the training data.
Unsupervised Attack with Zero Knowledge (AZK). This
attack corresponds to a zero-knowledge setting, where only



black-box access to the fine-tuned model and the ground-
truth answer of each query are available to the adversary.
The attacker has no information about the data distribution
Din, neither about the target model architecture.

In this case the feature vector is formed with ACC and
NLS, since these are the only available metrics in this set-
ting. We then run K-Means Algorithm on the features to
find the two clusters of Din/Dout providers. The cluster with
higher average Accuracy is considered the set of member
providers.
Supervised Attack with Partial Knowledge (APK). The
second attack focuses on the partial-knowledge setting,
in which it is assumed that the attacker knows a small
number of both member/non-member providers from the
training set, which is widely considered in some previous
work [7, 21, 42, 49]. Yet, the adversary is only aware of
the identities of the providers, without actually having ac-
cess to the documents utilized during the training process.
We also assume that the model architecture is known by the
adversary, since the training starts from a publicly available
pre-trained model, while maintaining the black-box access
to the pre-trained and fine-tuned models. Lastly, we con-
sider that the model outputs are tuples containing also the
loss and confidence value for each query, in addition to the
accuracy and the NLS of the previous setting.

In this approach, we randomly sample r-percent of tar-
get providers where r is the sampling rate, and obtain a
training subset Ptrain with member/non-member classes
equally distributed. We then evaluate the attack on the rest
of providers Ptest. Since black-box access to both the pre-
trained and fine-tuned model is given, we can make use of
the 6 metrics from groups 1, 2 and 3, to enrich the infor-
mation from one provider. Similarly to the first approach,
we use the concatenation of aggregated metric values as the
feature vector fp for each provider P ∈ Ptrain and train a
Random Forest classifier to infer provider membership.

Ensemble with Memorization. Given the memoriza-
tion results illustrated in Sec. 5.1, we combine our main
approaches with the memorization features of G4 into a
Hard-Voting Ensemble to further boost the performance.
In particular, we have two separate classifers, denoted as
CLS1 and CLS2. In CLS1, we separate members from
non-members by thresholding NLSmem at 0, while in CLS2

we use K-Means to figure out the two clusters based on
∆memNLS.

6. Federated Learning and Privacy baselines

To alleviate the sensitive information leakage problem and
adapt to the distributed training set-up, in this section we
propose a baseline method based on VT5 and basic standard
FL aggregation schemes and DP techniques.

6.1. Federated Learning

To perform the Federated Learning [39, 48], we apply the
standard FedAvg [39] strategy. For this, the model weights
of the non-frozen layers are sent from the server to the se-
lected clients at each federated learning round. The model
is then trained in parallel in each of the clients, and then,
the model update of the non-frozen layers is returned to the
server, where the different updates are averaged to obtain
an updated model state. This process is repeated for each
federated learning round.

We measure the efficiency of the communications as the
total amount of information transmitted between the server
and the clients in Gigabytes (GB).

6.2. Differentially Private Federated Learning

6.2.1 Differential Privacy

Definition 1 ((ε, δ)-Differential Privacy (DP) [13]). A
randomized mechanism M with range R satisfies (ε, δ)-
differential privacy, if for any two adjacent datasets E ∼
E′, and for any subset of outputs O ⊆ R, it holds that

Pr[M(E) ∈ O] ≤ eε Pr[M(E′) ∈ O] + δ. (1)

Definition 1 introduces (ε, δ)-DP, which bounds how
much the output distribution of a randomized mechanism
M can diverge on adjacent datasets. The privacy budget
consists of ε ≥ 0 (lower means more private) and the addi-
tive error δ ∈ [0, 1]. We refer to Dwork and Roth [12] for a
thorough introduction to DP.

The definition of DP critically depends on the concept of
adjacency of datasets E ∼ E′. We seek to protect the iden-
tity of providers that could be leaked through textual (com-
pany name, account number) or visual (logo, layout) infor-
mation. The typical document-level adjacency definition
would be too weak, as there are many documents from the
same provider and combining them could leak private infor-
mation. We therefore use provider-level add/remove adja-
cency, where E ∼ E′ if one can be obtained from the other
by adding or removing all documents from one provider.
Prior work denotes this as group-level DP [16, 35].

Applied to our baseline method, DP ensures that there
is a high probability that a machine learning model trained
under DP is similar whether or not the data of a particular
provider has been used for training the model.

Our training algorithm uses DP stochastic optimisation
[1, 47, 51]. Its privacy is based on clipping the contribution
from each unit of privacy (in our case each provider) and
adding Gaussian noise. Random subsampling of clients and
providers at each iteration provides further amplification of
privacy. We use numerical privacy accounting for accurate
evaluation of the cumulative privacy loss of the optimisation
[28, 29] using the PRV accountant [18].



We consider an adversary who can access all interme-
diate global models. The adversary aims at inferring the
training data (or some private information about them) of
the participating clients’ providers. The adversary is pas-
sive (i.e., honest-but-curious), that is, it does not modify the
trained global model.

6.2.2 DP Federated Learning algorithm

Our private federated algorithm FL-PROVIDER-DP is
shown in Algorithm 1. At every FL round the server ran-
domly selects a set of clients. Each selected client runs a lo-
cal instance of federated learning where each provider acts
as the training data of a “virtual client” within the real client.
The client randomly selects providers, clips the per-provider
updates and the adds an appropriate amount of noise so that
the update aggregated by the server is differentially private
with respect to all providers in ∪kPk (thus the division of
the per-client noise by the number of sampled clients |K|).
The noisy update of each client is normalized by a constant
M which is the minimum number of providers among all
clients. Note when no clients are sampled in a FL round the
server still needs to add noise.

Algorithm 1: FL-PROVIDER-DP
1 Server:
2 Initialize common model w0

3 for t = 1 to Tcl do
4 Select set K of clients randomly
5 for each client k in K do
6 uk

t = Clientk(wt−1, |K|)
7 end
8 wt = wt−1 +

1
|K|

∑
k∈K uk

t

9 end
Output: Global model wTcl

10

11 Clientk(wt−1, |K|):
12 Pk is a set of predefined disjoint providers in Dk

13 Select M ⊆ Pk randomly
14 for each provider P in M do
15 w′ = wt−1

16 ∆wP
t = AdamW(P,w′, Tgd)−wt−1

17 ∆ŵP
t = ∆wP

t /max
(
1,

||∆wP
t ||2

C

)
18 end

19 w′
t = wt−1 +

1
M

(∑
i∈M ∆ŵi

t +N
(
0, σ2C2I

|K|

))
Output: Model update (w′

t −wt−1)

6.2.3 Privacy analysis

The privacy loss of FL-PROVIDER-DP follows the usual
analysis of DP stochastic optimisation consisting of com-
positions of sub-sampled Gaussian mechanisms. The loss

depends on the number of iterations Tcl, sub-sampling rate
q and noise scale σ [18, 28, 29]. The probability for sam-
pling a specific provider is computed as follows. At every
federated round a provider is selected when (1) the corre-
sponding client is sampled, which has a probability of qc,
and (2) the batch of providers sampled locally at this client
contains the provider, which has a probability of at most

|M|
mink |Pk| . Therefore, a provider is sampled with a probabil-

ity of at most q = qc·|M|
mink |Pk| . We compute the required noise

scale σ using the PRV accountant [18], which is an accu-
rate numerical accountant and can provide arbitrarily tight
(ε, δ)-bounds. Similarly to previous work [10, 33, 58, 66]
we do not account for privacy loss originating from the tun-
ing of the hyperparameters.

6.3. Centralized DP training

The centralized DP training assumes that only one client
exists and all providers are part of the dataset of this client.
Our centralized DP training follows the same approach as
the federated learning baseline with the exception that at
every iteration Tcl the only existing client is selected.

7. Experiments

In our experiments we use five different variants of the VT5
DocVQA model:

VT50 (Zero-shot baseline): This method is not fine-tuned
on the new PFL-DocVQA dataset.

VT5C (Centralized non-DP model): Fine-tuned for 10
epochs on the PFL-DocVQA dataset. It is used as an up-
per bound of question-answering performance with respect
to the other variants.

VT5C+DP (Centralized DP model): Fine-tuned for 10 itera-
tions and in expectation 1000 providers are sampled at ev-
ery iteration. The noise scale σ is computed to reach a final
privacy budget of (ε= 8, δ = 10−5)-DP.

VT5FL (Federated Learning non-DP model): Fine-tuned
for 10 FL rounds, sampling K = 2 clients at each FL round.

VT5FL+DP (Federated Learning DP model): Fine-tuned for
10 FL rounds, in expectation K = 2 clients are sampled
per FL round and no subsampling of providers is done. The
noise scale σ is computed to reach a final privacy budget of
(ε= 8, δ = 10−5)-DP.

For all variants, a learning rate of 2e−4 is used. For the
privacy preserving variants we present results for ε ∈ {1, 4}
in the supplementary material.



7.1. Model Performance

Method ε
Question CommunicationAnswering (GB)ANLS Acc.

VT50 - 44.58 38.43 -
VT5C ∞ 90.91 81.80 -
VT5FL ∞ 88.73 79.30 44.66
VT5C+DP 8 67.19 60.12 -
VT5FL+DP 8 65.81 58.62 44.66

Table 3. Question answering performance and communication
cost of the base method VT5 on the different set-ups. DP train-
ing is done with δ = 10−5).

The question-answering results of the VT5 variants is
shown in Tab. 3. As expected, the VT5C performs the best.
VT5FL performance is close to the centralized version de-
spite training the same amount of iterations and seeing only
20% of the data at each iteration. In contrast, the private
VT5C+DP and VT5FL+DP shows a performance degradation
due to the introduced noise and clipping. Results for other
epsilon budgets are shown in the supplementary material.

7.2. Attack Performance

Our attack experiments are conducted on the RED data,
which contains 8, 100 Questions from 307/353 RED Pos-
itive/Negative Providers (member/non member). The at-
tack’s performance is presented in terms of the Attack Ac-
curacy metric. We evaluate our proposed attacks on multi-
ple subsets Ts, with their size controlled by s, in such a way
that Ts only includes those providers with a minimum of s
defined questions. Increasing s guarantees a set of informa-
tive providers with sufficient statistics while keeping lower
s requires the attack model to be robust to outliers. Tab. 4
reports the performance of our proposed attacks.

7.2.1 Non-private model

For the centralized non-private model, we can see that both
approaches consistently perform better as s increases, sug-
gesting that a certain number of queries is expected to char-
acterize a provider membership. Under the simple assump-
tion of zero-knowledge, AZK can surpass APK on all three
benchmarks (row 1 and 3) with the same set of features,
and even perform on par with fewer features on T10 (row 1
and 4). This implies G1 metrics can effectively differentiate
between members and non-members with enough queries.
Still, AZK fails if less information are available, as simple
K-Mean algorithm is quite sensitive to outliers.

When G2 and G3 features are added, APK clearly out-
performs the unsupervised approach across all the evalua-
tion sets (line 1 and 4), particularly in the high-data regime
by a margin of 3.5% Accuracy in T0 and 1.4% Accuracy

in T5, demonstrating the benefits of training a model with
partial-knowledge, combined with enriched feature vector.

Memorization metrics G4 are useful, especially effective
when combined with CLS1 and CLS2 into Ensemble, as it
improves attack’s performance in every subsets for both ap-
proaches, with the best Accuracy at almost 67% in T10. This
is not always the case if it is used as training features to the
attack model (line 2 and 5). We hypothesize this observa-
tion as Memorization Test can supply a clear sign of memo-
rized providers which other features can not provide. How-
ever, since this test falls into low-recall regime, as shown
in Tab. 2 where the model fails most of the time even with
training providers, using these features to train rather intro-
duces noise to the model.

7.2.2 Private models

We take the best performing attack configurations presented
in the previous section and we apply them to the centralized
DP model described in section 6 in order to assess the ability
of the proposed DP framework to reduce privacy leakage.

Results in Table 4 show that for both types of attacks,
AZK and APK, the accuracy of the attack in the centralized-
DP model is significantly lower than the accuracy in the
non-private model for the same configuratons. This reduc-
tion in the accuracy of the attack is more relevant in the
case of the APK method that has a greater potential of leak-
ing private information. These results confirm that the pro-
posed DP baseline can effectively mitigate privacy leakage
for DocVQA.

8. Conclusions
In this paper, we have explored for the first time privacy is-
sues related to DocVQA. We have proposed a large scale
DocVQA dataset especially designed for preserving the
identity of the providers used to train the model. We have
shown that state of the art generative multi-modal models
exhibit memorization and how this can be used to attack the
model and reveal private information about the providers.
As a solution to this privacy leakage we have proposed to
use Federated Learning and Differential Privacy in a base-
line framework that guarantees a higher level of privacy at
the cost of reducing the utility of the model.
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Michael Moeller. Inverting gradients - how easy is it to break
privacy in federated learning? In Advances in Neural In-
formation Processing Systems, pages 16937–16947. Curran
Associates, Inc., 2020. 2

[18] Sivakanth Gopi, Yin Tat Lee, and Lukas Wutschitz. Numer-
ical composition of differential privacy. In Advances in Neu-
ral Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021, NeurIPS
2021, December 6-14, 2021, virtual, pages 11631–11642,
2021. 6, 7

[19] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin de Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for NLP. In Proceedings of the 36th Interna-
tional Conference on Machine Learning, ICML 2019, 9-15
June 2019, Long Beach, California, USA, pages 2790–2799.
PMLR, 2019. 3

[20] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models. In
The Tenth International Conference on Learning Represen-
tations, ICLR 2022, Virtual Event, April 25-29, 2022. Open-
Review.net, 2022. 3

[21] Pingyi Hu, Zihan Wang, Ruoxi Sun, Hu Wang, and Minhui
Xue. M 4 i: Multi-modal models membership inference. Ad-
vances in Neural Information Processing Systems, 35:1867–
1882, 2022. 3, 5, 6

[22] Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, and Furu
Wei. Layoutlmv3: Pre-training for document ai with unified
text and image masking. In Proceedings of the 30th ACM
International Conference on Multimedia, pages 4083–4091,
2022. 1, 2

[23] Daphne Ippolito, Florian Tramèr, Milad Nasr, Chiyuan
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Pierre Genevès. Constrained differentially private federated
learning for low-bandwidth devices. In Proceedings of the

Thirty-Seventh Conference on Uncertainty in Artificial Intel-
ligence, pages 1756–1765. PMLR, 2021. 3

[25] Raouf Kerkouche, Gergely Ács, Claude Castelluccia, and
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Privacy-Aware Document Visual Question Answering

Supplementary Material

We continue the figure and table numbering as follows from
the main paper for clarity. Therefore, Figure 4 and Table 5
are the first references within the Supplementary Material.

A. Dataset
The PFL-DocVQA dataset is built from invoice documents
that belong to different providers and clients, some exam-
ples of the invoice documents are shown in Fig. 5. PFL-
DocVQA is composed of the document images, the OCR
tokens and a set of questions/answers for each page. An ex-
ample of these questions and answers is provided in Fig. 4.

Question: Can you provide the code associated with the
agency mentioned in the document?

Answer: RI13287
Question: What month is attributed to the invoice?
Answer: November 2020
Question: Can you inform me of the vendor’s name?
Answer: kmpt-am

Figure 4. Examples of questions and answers on an invoice docu-
ment within PFL-DocVQA.

Figure 5. Examples of different invoice document images of from
PFL-DocVQA.



The dataset is divided into BLUE and RED sub-datasets, as
described in Sec. 3 and shown in Fig. 2. To create these
subsets, we first cluster the documents by the provider ID
to define the Din and Dout distributions, and split the data
accordingly. In Tab. 5 we show the number of documents,
pages and questions/answers per client/subset in the BLUE
and RED data respectively. Moreover, the documents of
the same provider usually share visual and textual features,
such as the invoices showed in Fig. 7, which belong to
KATZ TELEVISION.

Dataset Split Client
(Subset) Provider Document Page Question/

Answer

BLUE

Train

0 400 2224 5930 19465
1 418 2382 6694 22229
2 404 2296 6667 21673
3 414 2358 6751 22148
4 429 4543 12071 32472
5 423 2378 6984 22361
6 423 2700 7406 23801
7 416 1951 5617 18462
8 401 1932 5421 17868
9 421 2136 6353 20840

Valid - 2231 3536 9150 30491

Test Positive 1390 2875 8088 25603
Negative 977 1912 5375 17988

RED Test Positive 307 425 1361 4205
Negative 353 425 1228 3895

Table 5. Statistics on PFL-DocVQA Dataset in terms of number
of Providers/Documents/Pages/Question-Answers. The notion of
client is only applied to BLUE Train data, while BLUE/RED Test
is divided into two subsets: Positive and Negative that are from
Din and Dout, respectively.

…

Figure 6. Histogram of number of questions per key in the train-
ing data.

Figure 7. A visualization of different invoice documents from the
same provider. The documents have similar layouts and use the
same logo.

Moreover, we provide an overview of the number of ques-
tions asked for each key in the training set in Fig. 6.

B. Visual T5 Model

In this section, we provide a further detailed description of
the employed VT5 base method illustrated in Fig. 3 and de-
tailed in Fig. 8. The question and OCR words are first tok-
enized into subword tokens and embedded into a learned se-
mantic contiguous representation from T5 [46], which cap-
tures the contextual information and semantics of the to-
ken. Moreover, VT5 utilizes a spatial embedding to repre-
sent the spatial information from the bounding box using
a lookup table for continuous encoding of one-hot vectors.
The different x0, y0, x1, y1 are embedded into 2 continuous
learned embeddings for the horizontal and vertical coordi-
nates. Then, the four embedded coordinates are aggregated
and summed to the semantic representation. In parallel, the
page image is divided into non-overlapping patches, which
are projected and fed to the Visual Transformer DiT [31].
Then, all the features are fed into the T5 backbone self-
attention layers to finally generate the answer in an autore-
gressive way.



What is the average per acre cost of 
fumigant applied (telone)?

…

Img0 Img1 Img2 ImgN

Linear Projection of Flattened Patches
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Word Embedding

OCR System

Spatial Embedding
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Visual Transformer Encoder Word Embedding

…                …

…

VT5 Decoder

VT5 Encoder

$42

Figure 8. VT5 detailed method architecture.

C. Model Performance

In Tab. 6 we extend Tab. 3 with the results of the new pri-
vacy preserving methods with ε budget 1 and 4, and illus-
trate the performance gap between those in Fig. 9. As ex-
pected, the more private the methods are, the worse they
perform on the question-answering task.

Method ε
Question CommunicationAnswering (GB)ANLS Acc.

VT50 - 44.58 38.43 -
VT5C ∞ 90.91 81.80 -
VT5C+DP 8 67.19 60.12 -
VT5C+DP 4 66.92 59.72 -
VT5C+DP 1 61.52 54.16 -
VT5FL ∞ 88.73 79.30 44.66
VT5FL+DP 8 65.81 58.62 44.66
VT5FL+DP 4 61.91 53.68 44.66
VT5FL+DP 1 57.47 50.60 44.66

Table 6. Question answering performance and communication
cost of the base method VT5 on the different set-ups. DP train-
ing is done with δ = 10−5).



0

10

20

30

40

50

60

70

80

90

100

Centralized Federated Learning

A
N

LS

No DP ε 8 ε 4 ε 1

Figure 9. Comparison of the question-answering performance
in ANLS of the different non-private and privacy preserving meth-
ods with different ε budgets in the Centralized and Federated
Learning setup.

D. Attacks

D.1. Memorization Test

D.1.1 Experimental Setup

Fig. 10 illustrates the procedure that is applied in each
Memorization Test. To begin, we first select a key that cor-
responds to a specific information of a provider, such as
name, email, tax number etc. Given the selected key, we
create a new test set which contains all RED documents,
in each document we ask one question w.r.t the key. The
question is sampled from the set of pre-defined templates
for each key in the training phase, while the answer is the
ground-truth information. Next, we remove all the clues re-
lated to the answer from both visual and textual input. For
the visual part, we use Gaussian Blurring with the radius of
Gaussian kernel set to 20. For the textual part, we discard
all tokens in the OCR that are identified as exact or fuzzy
matches to the answer string. Note, the size of each Mem-
orization Test might vary, depending on the availability of
the ground-truth answer in each document. For instance,
while the provider’s name is present in most of the invoice
documents, not all of them specify the provider email or
address, making these documents unavailable for testing.
In addition, we skip all documents for which our code fails
to process, maintaining the quality of the test. Finally, we
evaluate the model on this new evaluation set in terms of
DocVQA utility metrics, where high scores indicate clear
memorization behaviors. In Fig. 11 we show some exam-
ples of the Memorization Test with the information that is
asked removed.

OCR
Remove 

OCR tokens

Blur
Image Area

bounding box
[WMTW]

answer
WMTW OCR tokens 

with no answer

Question: What name is associated with the vendor?
Answer: WMTW

Figure 10. Our procedure to hide information in our Memo-
rization Test described in Appendix D.1.1 with an example.

D.1.2 More on Key: Provider Name

We further analyze the results of VT5C on the Memorization
Test with provider name reported in Tab. 7, especially with
the unexpected 0.17% in Accuracy (and 5.05% ANLS) on
RED Negative, while it was expected to be 0. By examining
the predicted answers, it is suspected that this performance
comes from residual information from the OCR. The model
might have learned to make use of other OCR tokens that
still contain information about the provider (e.g. our code
fails to remove ‘www.kcci.com’, which is the website for
provider ‘kcci’). Nevertheless, near 0% in Accuracy in this
test means the model struggles to recover the full answer.
Overall, we discover 5/340 positive providers with perfect
Accuracy for all of their documents.

Model
Red Positive Red Negative
Nmem=1333 Nmem=1178
ACC ANLS ACC ANLS

VT5C 3.55 11.64 0.17 5.05
VT5C+DP (ε=8) 0.03 2.4 0.03 0.66
VT5FL+DP (ε=8) 0.15 2.86 0.08 1.72

Table 7. Memorization Test with key provider name. Nmem de-
notes number of testing documents. Compared to the Non-Private
Model VT5C, memorization on positive providers are much re-
duced with Private Models.

D.1.3 Key: Provider Email

To perform this test, we first construct the evaluation set
as explained in Appendix D.1.1. For any RED Positive
provider, if there is any training question about the key
posed on provider’s documents, we reuse the training an-
swer as the ground-truth answer for the test. Since this
process cannot be applied to the RED Negative providers,
we only use documents that have questions about the key
found in RED testing examples. Similar to the pattern ob-
served with the provider names, we identify a certain de-
gree of memorization regarding positive providers’ emails
inside VT5C, with 13% of Accuracy in the test, which is



Key: Provider Name Key: Provider Email Key: Provider Tax Number
Question: What is the provider of this document? Question: Could you share the vendor’s email? Question: Can you let me know the vendor’s tax ID?
Answer: wmtw Answer: pmargarit@bhz.com Answer: 25-1126415

Figure 11. Examples of Memorization Test samples with information removed. The blurred image area is colored blue for better
visualization.

highly mitigated after the introduction of DP in our training
process.

Model
Red Positive Red Negative
Nmem=133 Nmem=8

ACC ANLS ACC ANLS
VT5C 13.09 32.65 0 39.91
VT5C+DP (ε=8) 0 1.39 0 0
VT5FL+DP (ε=8) 0 1.33 0 0

Table 8. Memorization Test with key provider email. Memo-
rization about this information is also observed with Non-Private
Models.

D.1.4 Key: Provider Tax Number, Registration ID

Our experiments in Appendix D.1.1 uncover memorization
behaviors within the target model, but the test is only verifi-
able in case the information is actually present in the testing
documents. In this section, we reveal another weakness of
this model, where the model can provide sensitive informa-
tion to specific queries even if the information does not exist
in the document.

The focus of this test is on Tax Number/Registration ID
as the key information for two reasons: First, these details
uniquely identify a specific entity. Second, these keys are
considered as under-trained as shown in Fig. 6, which indi-
cates the model has not learned sufficiently to answer these
types of questions due to limited training data. As a result,
any not-requested disclosure of such information is likely

attributed to memorization.
We carry out the test on RED Negative providers, where

we sample at maximum 5 different documents per provider.
For each document, we ask the target model VT5C 2 ques-
tions about Tax Number/Registration ID. Note that, we do
not hide information before inference, but discard docu-
ments where the answer is explicitly present, as we aim
to produce memorized answers, instead of actual answers
from the document. We list the top-15 most frequent unique
answers produced by the target model for each key:

Tax Number: {
‘91-0837469’: 280,
‘56-0589582’: 45,
‘91-0857469’: 23,
‘91-08374’: 12,
‘1828’: 7,
‘91-0657469’: 5,
‘37-1159433’: 5,
‘orig cf’: 3,
‘865864-ny’: 3,
‘91-08574’: 2,
‘033797’: 1,
‘db829057-8ea2-4d34-abbd-ec53’: 1,
‘woc13422932 [00.00]’: 1,
‘92-346-369’: 1,
‘113 61779 rt’: 1
...

}
Registration ID: {

‘91-0837469’: 30,
‘865864-ny’: 11,
‘216-256-5304’: 9,
‘91-08374’: 8,
‘56-0589582’: 8,
‘pol-cand’: 8,
‘921-0850.00’, 7,
‘56-05895’, 6,



‘idb#1828’, 6,
‘91-0857469’, 5,
‘pol-iss’, 5,
‘pb-18’, 5,
‘ktvf’, 5,
‘92-346-369’: 1,
‘orig cf’, 5
...

}

Based on the results, we see highly skewed distributions
over the predicted answer, while we expect more uniform
ones. Interestingly, there are common answers between
these two sets, suggesting that the model is confused be-
tween these two queries after being under-trained. We then
run the test against VT50 model and confirm that none of
the top predicted answers from VT5C comes from the pre-
training stage.

By accessing to the training data, we further inspect
among top-15 most predicted answers in each distribution,
and find that: 91-0837469 is the tax ID of airborne express;
56-0589582 is the tax ID of kennedy covington lobdell &
hickman. l.l.p; idb#1828 is the tax ID of wajq-fm; 37-
1159433 is the tax ID of meyer, capel, hirschfeld, muncy,
jahn & aldeen, p.c., all the providers listed are included
in training data. Also, we find that among the predicted
answers in both sets, there are 103 answers which corre-
spond to answers for different training questions, and they
are not necessarily relevant to Tax Number/Registration ID,
but other information such as Phone Number/Asset Code
etc. This clearly demonstrates that some sensitive informa-
tion is actually memorized inside non-private models

D.2. Private Mechanisms mitigate Memorization

Model RED RED Positive RED Negative
∆ACC ∆ANLSACC ANLS ACC ANLS ACC ANLS

VT5C 81.40 90.17 85.92 93.68 76.53 86.48 9.39 7.20
VT5C+DP (ε=1) 52.4 60.09 53.98 61.87 50.68 58.17 3.3 3.7
VT5C+DP (ε=4) 58.59 65.77 59.86 67.5 57.23 64.39 2.63 2.66
VT5C+DP (ε=8) 60.31 67.44 61.57 69.04 58.94 65.72 2.62 3.33
VT5FL+DP (ε=1) 49.94 56.8 50.96 58.23 48.83 55.24 2.13 2.98
VT5FL+DP (ε=4) 53.68 61.8 55 63.21 52.25 60.28 2.75 2.93
VT5FL+DP (ε=8) 58.33 65.44 59.41 66.89 57.18 63.88 2.22 3.01

Table 9. DocVQA Performance of Private Models on RED..
Compared to the Non-Private Model VT5C, ∆ values from private
Models are significantly decreased. Refer to Tab. 1 for details of
notations.

We further validate the effectiveness of our DP mechanism
to alleviate the memorization effect. First, we see that intro-
ducing DP to the training algorithm significantly closes the
model’s performance gap ∆ between Din/Dout subsets, as
shown in Tab. 9. Furthermore, we observe significant drops
from Private Models compared to Non-Private ones in our
Memorization Test with both Provider Name and Email, to
almost 0, as reported in Tab. 7 and Tab. 8. These results
suggest that overfitting in our Private Models is effectively
decreased, and thus reduces memorization.

D.3. More on Attack Performance against Private
Models

We provide more results of our proposed attacks against Pri-
vate Models, both with centralized training and Federated
Learning, in Tab. 10. The experiment settings including
Feature Set, Attack Scenario, Number of Train/Test Exam-
ples are denoted as follows: ♢ = [G1;ZK+U; 0; (1− r)Ts],
‡ = [G1+G2+G3;PK+S; rTs; (1−r)Ts]. Refer to Tab. 4 for
details of each notation.
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Figure 12. Comparison of the attack accuracy performance
of the different attacks (AZK ♢ and APK ‡) performed on non-
private and privacy preserving methods with different ε budgets
in the Centralized and Federated Learning setup. The comparison
is performed according to the number of Ts test providers s = 0
(top), s = 5 (middle) and s = 10 (bottom).



Model Attack Method Evaluation Set
s = 0 s = 5 s = 10

VT5C
AZK♢ 56.13±0.55 60.25±0.62 65.12±0.99
APK‡ 59.67±1.01 61.66±1.71 65.20±1.81

VT5FL
AZK♢ 53.95±0.72 57.88±0.70 61.35±0.43
APK‡ 55.57±2.48 58.72±2.02 62.13±2.71

VT5C+DP (ε=1) AZK♢ 55.37±3.06 57.17±0.73 60.48±1.48
APK‡ 51.71±3.17 50.27±2.14 53.04±0.64

VT5C+DP (ε=4) AZK♢ 53.59±0.76 56.67±0.69 59.03±1.53
APK‡ 54.20±0.98 53.45±3.05 54.88±2.94

VT5C+DP (ε=8) AZK♢ 55.12±0.85 58.54±0.77 60.77±0.94
APK‡ 51.67±1.56 54.06±2.54 58.55±1.34

VT5FL+DP (ε=1) AZK♢ ± ± ±
APK‡ 52.17±2.12 53.55±4.94 54.69±3.93

VT5FL+DP (ε=4) AZK♢ 53.34±0.96 55.82±0.79 61.35±0.86
APK‡ 52.45±1.35 51.28±1.99 56.91±4.4

VT5FL+DP (ε=8) AZK♢ 53.81±0.97 57.78±0.94 61.54±0.78
APK‡ 52.56±2.05 52.7±4.21 56.43±1.45

Table 10. Attack Performance against Private models on different RED subsets.

D.4. Ablation Study

In this section, we measure the impact of our selected metric
and classifying methods for both AZK and APK in terms
of Attack Accuracy. We employ VT5C as the target model
and perform hyperparameter search for Random Forest in
all ablation experiments.

D.4.1 Selected Metrics and Classifying Methods

We ablate each of the selected metrics according to
its availability order in our attack scenario, i.e. from
partial-knowledge with access to the pre-trained model and
loss/confidence values to zero-knowledge. We evaluate all
the attacks on the subset with s = 5 and report the re-
sults in Tab. 11. From line 1 to 4, we find that K-Means
method is a good baseline in restricted scenario like zero-
knowledge, where only ACC and NLS are available met-
rics. In contrast, Random Forest is not suitable choice for
this setting as it requires some training data and more fea-
tures to perform adequately. When more information is ac-
cessible like in partial-knowledge scenario, the Supervised
training directly benefits from it while the Unsupervised one
shows substantial degradation with higher dimensional fea-
tures (line 7). Finally, the designed features are all useful
for Supervised training (line 2 to 6), as the model incre-
mentally improves and surpasses the best performance of
Unsupervised approach with the full set of features.

Setting Feature Accuracy
ACC NLS L conf ∆L ∆conf

AZK KM+U ✓ 60.15±0.43
KM+U ✓ ✓ 60.25±0.62

APK

RF+S ✓ 57.23±1.36
RF+S ✓ ✓ 58.24±2.68
RF+S ✓ ✓ ✓ ✓ 59.79±1.75
RF+S ✓ ✓ ✓ ✓ ✓ ✓ 61.66±1.71

KM+U ✓ ✓ ✓ ✓ ✓ ✓ 49.22±2.3

Table 11. Ablation Study of the Selected Metrics and Classi-
fying Methods for our proposed attacks. KM denotes K-Means
Clustering method while RF denotes Random Forest Classifier. In
all experiments, the performance is evaluated on the same RED
subset with size (1− r)Ts, where we use s = 5 and r = 0.15 for
Supervised Setting. Refer to Tab. 4 for details of notation.

D.4.2 Minimum Number of Queries s

We also evaluate the performance of APK‡ while varying
the minimum number of Questions per Provider s. As illus-
trated in Tab. 13, there is an upward trend in Attack Accu-
racy when s is increased from 0 to 10. This is due to the
retention of informative providers, filtering out outliers and
thus creating a more representative training dataset. How-
ever, excessively raising s as the threshold has an adverse
effect, as it reduces the total number of Providers.
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Figure 13. (Top) Distribution of number of Questions per
Provider in the RED data. (Bottom) The impact of the num-
ber of Questions per Provider on performance of our proposed
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E. Training hyperparameters
In Tab. 12 we specify the hyperparameters used to train the
different methods.

F. Privacy Analysis: More details
FL-PROVIDER-DP is described in Alg. 1. Group-level dif-
ferential privacy necessitates that each client adds Gaussian
noise to the aggregated model updates, which are generated
using the data from the providers. We define Pk as a set
of predefined disjoint providers in the dataset of client k.
In particular, each client first select M ⊆ Pk randomly.
Then, for each selected provider i in M, we compute the
update ∆wi,k

t = AdamW(i,w′, Tgd) − wt−1, which is
then clipped (in Line 17) to obtain ∆ŵi,k

t with L2-norm
at most C. Then, random noise zk ∼ N (0, σ2C2I/|K|)
is added to

∑
i∈M ∆ŵi,k

t before averaging over M to

obtain the update uk
t = 1

M

(∑
i∈M ∆ŵi,k

t + zk

)
for

client k. Then, we compute at the server side the aggre-
gate
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M2 ) as the sum
of Gaussian random variables also follows Gaussian
distribution1:
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Method Learning Batch Epochs /
δ

Sensitivity Noise Providers
Rate Size Iterations σ Multiplier per iteration

VT5C 2e−4 10 10 - - - 4149 (All)
VT5C+DP ε=1 2e−4 8 10 10e−5 1 3.32031250000 1000
VT5C+DP ε=4 2e−4 8 10 10e−5 5 1.25244140625 1000
VT5C+DP ε=8 2e−4 8 10 10e−5 5 0.83251953125 1000

Method Learning Batch FL
δ

Sensitivity Noise Provider sampling Client sampling
Rate Size Rounds σ Multiplier probability probability

VT5FL 2e−4 10 10 - - - 1 0.2
VT5FL+DP ε=8 2e−4 8 10 10e−5 5 0.77148437500 1 0.2

Table 12. Training hyperparameters for the different centralized (top) and federated learning (bottom) methods used in the PFL-DocVQA
dataset.

Assuming Mk = M for all k:

=
∑
k

∑
i∈M

∆ŵi,k
t

M
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(
0,
∑
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|K|M2
I

)

=
∑
k

∑
i∈M

∆ŵi,k
t

M
+N

(
0,

|K|C2σ2

|K|M2
I

)
And then differential privacy is satisfied where ε and δ

can be computed using the PRV accountant described in
Section 6.2.

However, as the noise is inversely proportional to |K|, zk
is likely to be small if |K| is too large. Therefore, the adver-
sary accessing an individual update uk

t can almost learn a
non-noisy update since zk is small. Hence, each client uses
secure aggregation to encrypt its individual update before
sending it to the server. Upon reception, the server sums the
encrypted updates as:

∑
k∈K

uk
t =

∑
k∈K

EncKk

(
1

M

(∑
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))
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∑
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t

))
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(2)

where EncKk

(
1
M

(∑
i∈M ∆ŵi,k

t + zk

))
=

1
M

(∑
i∈M ∆ŵi,k

t + zk

)
+ Kk mod p and∑

k Kk = 0 (see [2, 6] for more details).
Here the modulo is taken element-wise and
p = 2⌈log2(maxk || 1

M (
∑

i∈M ∆ŵi,k
t +zk)||∞|K|)⌉.
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