toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Mohammad Rouhani; Angel Sappa edit  doi
isbn  openurl
  Title A Novel Approach to Geometric Fitting of Implicit Quadrics Type Conference Article
  Year 2009 Publication 8th International Conference on Advanced Concepts for Intelligent Vision Systems Abbreviated Journal  
  Volume 5807 Issue Pages 121–132  
  Keywords  
  Abstract This paper presents a novel approach for estimating the geometric distance from a given point to the corresponding implicit quadric curve/surface. The proposed estimation is based on the height of a tetrahedron, which is used as a coarse but reliable estimation of the real distance. The estimated distance is then used for finding the best set of quadric parameters, by means of the Levenberg-Marquardt algorithm, which is a common framework in other geometric fitting approaches. Comparisons of the proposed approach with previous ones are provided to show both improvements in CPU time as well as in the accuracy of the obtained results.  
  Address Bordeaux, France  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-04696-4 Medium  
  Area Expedition Conference ACIVS  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ RoS2009 Serial 1194  
Permanent link to this record
 

 
Author (up) Mohammad Rouhani; Angel Sappa edit  doi
isbn  openurl
  Title Relaxing the 3L Algorithm for an Accurate Implicit Polynomial Fitting Type Conference Article
  Year 2010 Publication 23rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 3066-3072  
  Keywords  
  Abstract This paper presents a novel method to increase the accuracy of linear fitting of implicit polynomials. The proposed method is based on the 3L algorithm philosophy. The novelty lies on the relaxation of the additional constraints, already imposed by the 3L algorithm. Hence, the accuracy of the final solution is increased due to the proper adjustment of the expected values in the aforementioned additional constraints. Although iterative, the proposed approach solves the fitting problem within a linear framework, which is independent of the threshold tuning. Experimental results, both in 2D and 3D, showing improvements in the accuracy of the fitting are presented. Comparisons with both state of the art algorithms and a geometric based one (non-linear fitting), which is used as a ground truth, are provided.  
  Address San Francisco; CA; USA; June 2010  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-6919 ISBN 978-1-4244-6984-0 Medium  
  Area Expedition Conference CVPR  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ RoS2010a Serial 1303  
Permanent link to this record
 

 
Author (up) Mohammad Rouhani; Angel Sappa edit  doi
isbn  openurl
  Title A Fast accurate Implicit Polynomial Fitting Approach Type Conference Article
  Year 2010 Publication 17th IEEE International Conference on Image Processing Abbreviated Journal  
  Volume Issue Pages 1429–1432  
  Keywords  
  Abstract This paper presents a novel hybrid approach that combines state of the art fitting algorithms: algebraic-based and geometric-based. It consists of two steps; first, the 3L algorithm is used as an initialization and then, the obtained result, is improved through a geometric approach. The adopted geometric approach is based on a distance estimation that avoids costly search for the real orthogonal distance. Experimental results are presented as well as quantitative comparisons.  
  Address Hong-Kong  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1522-4880 ISBN 978-1-4244-7992-4 Medium  
  Area Expedition Conference ICIP  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ RoS2010b Serial 1359  
Permanent link to this record
 

 
Author (up) Mohammad Rouhani; Angel Sappa edit  openurl
  Title Implicit B-Spline Fitting Using the 3L Algorithm Type Conference Article
  Year 2011 Publication 18th IEEE International Conference on Image Processing Abbreviated Journal  
  Volume Issue Pages 893-896  
  Keywords  
  Abstract  
  Address Brussels, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICIP  
  Notes ADAS Approved no  
  Call Number Admin @ si @ RoS2011a; ADAS @ adas @ Serial 1782  
Permanent link to this record
 

 
Author (up) Mohammad Rouhani; Angel Sappa edit  doi
isbn  openurl
  Title Correspondence Free Registration through a Point-to-Model Distance Minimization Type Conference Article
  Year 2011 Publication 13th IEEE International Conference on Computer Vision Abbreviated Journal  
  Volume Issue Pages 2150-2157  
  Keywords  
  Abstract This paper presents a novel formulation, which derives in a smooth minimization problem, to tackle the rigid registration between a given point set and a model set. Unlike most of the existing works, which are based on minimizing a point-wise correspondence term, we propose to describe the model set by means of an implicit representation. It allows a new definition of the registration error, which works beyond the point level representation. Moreover, it could be used in a gradient-based optimization framework. The proposed approach consists of two stages. Firstly, a novel formulation is proposed that relates the registration parameters with the distance between the model and data set. Secondly, the registration parameters are obtained by means of the Levengberg-Marquardt algorithm. Experimental results and comparisons with state of the art show the validity of the proposed framework.  
  Address Barcelona  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-5499 ISBN 978-1-4577-1101-5 Medium  
  Area Expedition Conference ICCV  
  Notes ADAS Approved no  
  Call Number Admin @ si @ RoS2011b; ADAS @ adas @ Serial 1832  
Permanent link to this record
 

 
Author (up) Mohammad Rouhani; Angel Sappa edit   pdf
doi  openurl
  Title Implicit Polynomial Representation through a Fast Fitting Error Estimation Type Journal Article
  Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 21 Issue 4 Pages 2089-2098  
  Keywords  
  Abstract Impact Factor
This paper presents a simple distance estimation for implicit polynomial fitting. It is computed as the height of a simplex built between the point and the surface (i.e., a triangle in 2-D or a tetrahedron in 3-D), which is used as a coarse but reliable estimation of the orthogonal distance. The proposed distance can be described as a function of the coefficients of the implicit polynomial. Moreover, it is differentiable and has a smooth behavior . Hence, it can be used in any gradient-based optimization. In this paper, its use in a Levenberg-Marquardt framework is shown, which is particularly devoted for nonlinear least squares problems. The proposed estimation is a generalization of the gradient-based distance estimation, which is widely used in the literature. Experimental results, both in 2-D and 3-D data sets, are provided. Comparisons with state-of-the-art techniques are presented, showing the advantages of the proposed approach.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ RoS2012b; ADAS @ adas @ Serial 1937  
Permanent link to this record
 

 
Author (up) Mohammad Rouhani; Angel Sappa edit  doi
isbn  openurl
  Title Non-Rigid Shape Registration: A Single Linear Least Squares Framework Type Conference Article
  Year 2012 Publication 12th European Conference on Computer Vision Abbreviated Journal  
  Volume 7578 Issue Pages 264-277  
  Keywords  
  Abstract This paper proposes a non-rigid registration formulation capturing both global and local deformations in a single framework. This formulation is based on a quadratic estimation of the registration distance together with a quadratic regularization term. Hence, the optimal transformation parameters are easily obtained by solving a liner system of equations, which guarantee a fast convergence. Experimental results with challenging 2D and 3D shapes are presented to show the validity of the proposed framework. Furthermore, comparisons with the most relevant approaches are provided.  
  Address Florencia  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-33785-7 Medium  
  Area Expedition Conference ECCV  
  Notes ADAS Approved no  
  Call Number Admin @ si @ RoS2012a Serial 2158  
Permanent link to this record
 

 
Author (up) Mohammad Rouhani; Angel Sappa edit   pdf
doi  openurl
  Title The Richer Representation the Better Registration Type Journal Article
  Year 2013 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 22 Issue 12 Pages 5036-5049  
  Keywords  
  Abstract In this paper, the registration problem is formulated as a point to model distance minimization. Unlike most of the existing works, which are based on minimizing a point-wise correspondence term, this formulation avoids the correspondence search that is time-consuming. In the first stage, the target set is described through an implicit function by employing a linear least squares fitting. This function can be either an implicit polynomial or an implicit B-spline from a coarse to fine representation. In the second stage, we show how the obtained implicit representation is used as an interface to convert point-to-point registration into point-to-implicit problem. Furthermore, we show that this registration distance is smooth and can be minimized through the Levengberg-Marquardt algorithm. All the formulations presented for both stages are compact and easy to implement. In addition, we show that our registration method can be handled using any implicit representation though some are coarse and others provide finer representations; hence, a tradeoff between speed and accuracy can be set by employing the right implicit function. Experimental results and comparisons in 2D and 3D show the robustness and the speed of convergence of the proposed approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ RoS2013 Serial 2665  
Permanent link to this record
 

 
Author (up) Mohammad Rouhani; Angel Sappa; E. Boyer edit  doi
openurl 
  Title Implicit B-Spline Surface Reconstruction Type Journal Article
  Year 2015 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 24 Issue 1 Pages 22 - 32  
  Keywords  
  Abstract This paper presents a fast and flexible curve, and surface reconstruction technique based on implicit B-spline. This representation does not require any parameterization and it is locally supported. This fact has been exploited in this paper to propose a reconstruction technique through solving a sparse system of equations. This method is further accelerated to reduce the dimension to the active control lattice. Moreover, the surface smoothness and user interaction are allowed for controlling the surface. Finally, a novel weighting technique has been introduced in order to blend small patches and smooth them in the overlapping regions. The whole framework is very fast and efficient and can handle large cloud of points with very low computational cost. The experimental results show the flexibility and accuracy of the proposed algorithm to describe objects with complex topologies. Comparisons with other fitting methods highlight the superiority of the proposed approach in the presence of noise and missing data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ RSB2015 Serial 2541  
Permanent link to this record
 

 
Author (up) Mohammad Rouhani; E. Boyer; Angel Sappa edit   pdf
doi  openurl
  Title Non-Rigid Registration meets Surface Reconstruction Type Conference Article
  Year 2014 Publication International Conference on 3D Vision Abbreviated Journal  
  Volume Issue Pages 617-624  
  Keywords  
  Abstract Non rigid registration is an important task in computer vision with many applications in shape and motion modeling. A fundamental step of the registration is the data association between the source and the target sets. Such association proves difficult in practice, due to the discrete nature of the information and its corruption by various types of noise, e.g. outliers and missing data. In this paper we investigate the benefit of the implicit representations for the non-rigid registration of 3D point clouds. First, the target points are described with small quadratic patches that are blended through partition of unity weighting. Then, the discrete association between the source and the target can be replaced by a continuous distance field induced by the interface. By combining this distance field with a proper deformation term, the registration energy can be expressed in a linear least square form that is easy and fast to solve. This significantly eases the registration by avoiding direct association between points. Moreover, a hierarchical approach can be easily implemented by employing coarse-to-fine representations. Experimental results are provided for point clouds from multi-view data sets. The qualitative and quantitative comparisons show the outperformance and robustness of our framework. %in presence of noise and outliers.  
  Address Tokyo; Japan; December 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 3DV  
  Notes ADAS; 600.055; 600.076 Approved no  
  Call Number Admin @ si @ RBS2014 Serial 2534  
Permanent link to this record
 

 
Author (up) Mohammed Al Rawi; Dimosthenis Karatzas edit   pdf
openurl 
  Title On the Labeling Correctness in Computer Vision Datasets Type Conference Article
  Year 2018 Publication Proceedings of the Workshop on Interactive Adaptive Learning, co-located with European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Image datasets have heavily been used to build computer vision systems.
These datasets are either manually or automatically labeled, which is a
problem as both labeling methods are prone to errors. To investigate this problem, we use a majority voting ensemble that combines the results from several Convolutional Neural Networks (CNNs). Majority voting ensembles not only enhance the overall performance, but can also be used to estimate the confidence level of each sample. We also examined Softmax as another form to estimate posterior probability. We have designed various experiments with a range of different ensembles built from one or different, or temporal/snapshot CNNs, which have been trained multiple times stochastically. We analyzed CIFAR10, CIFAR100, EMNIST, and SVHN datasets and we found quite a few incorrect
labels, both in the training and testing sets. We also present detailed confidence analysis on these datasets and we found that the ensemble is better than the Softmax when used estimate the per-sample confidence. This work thus proposes an approach that can be used to scrutinize and verify the labeling of computer vision datasets, which can later be applied to weakly/semi-supervised learning. We propose a measure, based on the Odds-Ratio, to quantify how many of these incorrectly classified labels are actually incorrectly labeled and how many of these are confusing. The proposed methods are easily scalable to larger datasets, like ImageNet, LSUN and SUN, as each CNN instance is trained for 60 epochs; or even faster, by implementing a temporal (snapshot) ensemble.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECML-PKDDW  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ RaK2018 Serial 3144  
Permanent link to this record
 

 
Author (up) Mohammed Al Rawi; Ernest Valveny edit   pdf
url  doi
openurl 
  Title Compact and Efficient Multitask Learning in Vision, Language and Speech Type Conference Article
  Year 2019 Publication IEEE International Conference on Computer Vision Workshops Abbreviated Journal  
  Volume Issue Pages 2933-2942  
  Keywords  
  Abstract Across-domain multitask learning is a challenging area of computer vision and machine learning due to the intra-similarities among class distributions. Addressing this problem to cope with the human cognition system by considering inter and intra-class categorization and recognition complicates the problem even further. We propose in this work an effective holistic and hierarchical learning by using a text embedding layer on top of a deep learning model. We also propose a novel sensory discriminator approach to resolve the collisions between different tasks and domains. We then train the model concurrently on textual sentiment analysis, speech recognition, image classification, action recognition from video, and handwriting word spotting of two different scripts (Arabic and English). The model we propose successfully learned different tasks across multiple domains.  
  Address Seul; Korea; October 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ RaV2019 Serial 3365  
Permanent link to this record
 

 
Author (up) Mohammed Al Rawi; Ernest Valveny; Dimosthenis Karatzas edit   pdf
url  doi
openurl 
  Title Can One Deep Learning Model Learn Script-Independent Multilingual Word-Spotting? Type Conference Article
  Year 2019 Publication 15th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 260-267  
  Keywords  
  Abstract Word spotting has gained increased attention lately as it can be used to extract textual information from handwritten documents and scene-text images. Current word spotting approaches are designed to work on a single language and/or script. Building intelligent models that learn script-independent multilingual word-spotting is challenging due to the large variability of multilingual alphabets and symbols. We used ResNet-152 and the Pyramidal Histogram of Characters (PHOC) embedding to build a one-model script-independent multilingual word-spotting and we tested it on Latin, Arabic, and Bangla (Indian) languages. The one-model we propose performs on par with the multi-model language-specific word-spotting system, and thus, reduces the number of models needed for each script and/or language.  
  Address Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.129; 600.121 Approved no  
  Call Number Admin @ si @ RVK2019 Serial 3337  
Permanent link to this record
 

 
Author (up) Monica Piñol edit  openurl
  Title Adaptative Vocabulary Tree for Image Classification using Reinforcement Learning Type Report
  Year 2010 Publication CVC Technical Report Abbreviated Journal  
  Volume 162 Issue Pages  
  Keywords  
  Abstract  
  Address Bellaterra (Barcelona)  
  Corporate Author Computer Vision Center Thesis Master's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Piñ2010 Serial 1936  
Permanent link to this record
 

 
Author (up) Monica Piñol edit  isbn
openurl 
  Title Reinforcement Learning of Visual Descriptors for Object Recognition Type Book Whole
  Year 2014 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The human visual system is able to recognize the object in an image even if the object is partially occluded, from various points of view, in different colors, or with independence of the distance to the object. To do this, the eye obtains an image and extracts features that are sent to the brain, and then, in the brain the object is recognized. In computer vision, the object recognition branch tries to learns from the human visual system behaviour to achieve its goal. Hence, an algorithm is used to identify representative features of the scene (detection), then another algorithm is used to describe these points (descriptor) and finally the extracted information is used for classifying the object in the scene. The selection of this set of algorithms is a very complicated task and thus, a very active research field. In this thesis we are focused on the selection/learning of the best descriptor for a given image. In the state of the art there are several descriptors but we do not know how to choose the best descriptor because depends on scenes that we will use (dataset) and the algorithm chosen to do the classification. We propose a framework based on reinforcement learning and bag of features to choose the best descriptor according to the given image. The system can analyse the behaviour of different learning algorithms and descriptor sets. Furthermore the proposed framework for improving the classification/recognition ratio can be used with minor changes in other computer vision fields, such as video retrieval.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Ricardo Toledo;Angel Sappa  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-940902-5-7 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ Piñ2014 Serial 2464  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: