|
Angel Valencia, Roger Idrovo, Angel Sappa, Douglas Plaza, & Daniel Ochoa. (2017). A 3D Vision Based Approach for Optimal Grasp of Vacuum Grippers. In IEEE International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics.
Abstract: In general, robot grasping approaches are based on the usage of multi-finger grippers. However, when large size objects need to be manipulated vacuum grippers are preferred, instead of finger based grippers. This paper aims to estimate the best picking place for a two suction cups vacuum gripper,
when planar objects with an unknown size and geometry are considered. The approach is based on the estimation of geometric properties of object’s shape from a partial cloud of points (a single 3D view), in such a way that combine with considerations of a theoretical model to generate an optimal contact point
that minimizes the vacuum force needed to guarantee a grasp.
Experimental results in real scenarios are presented to show the validity of the proposed approach.
|
|
|
Anjan Dutta, Pau Riba, Josep Llados, & Alicia Fornes. (2017). Pyramidal Stochastic Graphlet Embedding for Document Pattern Classification. In 14th International Conference on Document Analysis and Recognition (pp. 33–38).
Abstract: Document pattern classification methods using graphs have received a lot of attention because of its robust representation paradigm and rich theoretical background. However, the way of preserving and the process for delineating documents with graphs introduce noise in the rendition of underlying data, which creates instability in the graph representation. To deal with such unreliability in representation, in this paper, we propose Pyramidal Stochastic Graphlet Embedding (PSGE).
Given a graph representing a document pattern, our method first computes a graph pyramid by successively reducing the base graph. Once the graph pyramid is computed, we apply Stochastic Graphlet Embedding (SGE) for each level of the pyramid and combine their embedded representation to obtain a global delineation of the original graph. The consideration of pyramid of graphs rather than just a base graph extends the representational power of the graph embedding, which reduces the instability caused due to noise and distortion. When plugged with support
vector machine, our proposed PSGE has outperformed the state-of-the-art results in recognition of handwritten words as well as graphical symbols
Keywords: graph embedding; hierarchical graph representation; graph clustering; stochastic graphlet embedding; graph classification
|
|
|
Anna Salvatella, Maria Vanrell, & Ramon Baldrich. (2003). Subtexture Components for Texture Description. In 1rst. Iberian Conference on Pattern Recognition and Image Analysis IbPRIA 2003 (Vol. 2652, pp. 884–892). LNCS.
|
|
|
Antoni Rosell, Sonia Baeza, S. Garcia-Reina, JL. Mate, Ignasi Guasch, I. Nogueira, et al. (2022). Radiomics to increase the effectiveness of lung cancer screening programs. Radiolung preliminary results. ERJ - European Respiratory Journal, 60(66).
|
|
|
Antonio Lopez. (1997). Ridge/Valley-like structures: Creases, separatrices and drainage patterns.
|
|
|
Antonio Lopez, Atsushi Imiya, Tomas Pajdla, & Jose Manuel Alvarez. Computer Vision in Vehicle Technology: Land, Sea & Air.
Abstract: A unified view of the use of computer vision technology for different types of vehicles
Computer Vision in Vehicle Technology focuses on computer vision as on-board technology, bringing together fields of research where computer vision is progressively penetrating: the automotive sector, unmanned aerial and underwater vehicles. It also serves as a reference for researchers of current developments and challenges in areas of the application of computer vision, involving vehicles such as advanced driver assistance (pedestrian detection, lane departure warning, traffic sign recognition), autonomous driving and robot navigation (with visual simultaneous localization and mapping) or unmanned aerial vehicles (obstacle avoidance, landscape classification and mapping, fire risk assessment).
The overall role of computer vision for the navigation of different vehicles, as well as technology to address on-board applications, is analysed.
|
|
|
Antonio Lopez, Jiaolong Xu, Jose Luis Gomez, David Vazquez, & German Ros. (2017). From Virtual to Real World Visual Perception using Domain Adaptation -- The DPM as Example. In Gabriela Csurka (Ed.), Domain Adaptation in Computer Vision Applications (pp. 243–258). Springer.
Abstract: Supervised learning tends to produce more accurate classifiers than unsupervised learning in general. This implies that training data is preferred with annotations. When addressing visual perception challenges, such as localizing certain object classes within an image, the learning of the involved classifiers turns out to be a practical bottleneck. The reason is that, at least, we have to frame object examples with bounding boxes in thousands of images. A priori, the more complex the model is regarding its number of parameters, the more annotated examples are required. This annotation task is performed by human oracles, which ends up in inaccuracies and errors in the annotations (aka ground truth) since the task is inherently very cumbersome and sometimes ambiguous. As an alternative we have pioneered the use of virtual worlds for collecting such annotations automatically and with high precision. However, since the models learned with virtual data must operate in the real world, we still need to perform domain adaptation (DA). In this chapter we revisit the DA of a deformable part-based model (DPM) as an exemplifying case of virtual- to-real-world DA. As a use case, we address the challenge of vehicle detection for driver assistance, using different publicly available virtual-world data. While doing so, we investigate questions such as: how does the domain gap behave due to virtual-vs-real data with respect to dominant object appearance per domain, as well as the role of photo-realism in the virtual world.
Keywords: Domain Adaptation
|
|
|
Antonio Lopez, & Joan Serrat. (1996). Tracing crease curves by solving a system of differential equations. In ECCV 1996 (Vol. 1064). LNCS.
|
|
|
Antonio Lopez, & Joan Serrat. (1995). Image Analysis through Surface Geometric Descriptors. In VI National Simposium on Pattern Recognition and image Analysis..
|
|
|
Antonio Lopez, W. Niessen, Joan Serrat, K. Nicolay, Bart M. Ter Haar Romeny, Juan J. Villanueva, et al. (2000). New improvements in the multiscale analysis of trabecular bone patterns. IOS Press.
|
|
|
Ariel Amato. (2014). Moving cast shadow detection. ELCVIA - Electronic letters on computer vision and image analysis, 13(2), 70–71.
Abstract: Motion perception is an amazing innate ability of the creatures on the planet. This adroitness entails a functional advantage that enables species to compete better in the wild. The motion perception ability is usually employed at different levels, allowing from the simplest interaction with the ’physis’ up to the most transcendental survival tasks. Among the five classical perception system , vision is the most widely used in the motion perception field. Millions years of evolution have led to a highly specialized visual system in humans, which is characterized by a tremendous accuracy as well as an extraordinary robustness. Although humans and an immense diversity of species can distinguish moving object with a seeming simplicity, it has proven to be a difficult and non trivial problem from a computational perspective. In the field of Computer Vision, the detection of moving objects is a challenging and fundamental research area. This can be referred to as the ’origin’ of vast and numerous vision-based research sub-areas. Nevertheless, from the bottom to the top of this hierarchical analysis, the foundations still relies on when and where motion has occurred in an image. Pixels corresponding to moving objects in image sequences can be identified by measuring changes in their values. However, a pixel’s value (representing a combination of color and brightness) could also vary due to other factors such as: variation in scene illumination, camera noise and nonlinear sensor responses among others. The challenge lies in detecting if the changes in pixels’ value are caused by a genuine object movement or not. An additional challenging aspect in motion detection is represented by moving cast shadows. The paradox arises because a moving object and its cast shadow share similar motion patterns. However, a moving cast shadow is not a moving object. In fact, a shadow represents a photometric illumination effect caused by the relative position of the object with respect to the light sources. Shadow detection methods are mainly divided in two domains depending on the application field. One normally consists of static images where shadows are casted by static objects, whereas the second one is referred to image sequences where shadows are casted by moving objects. For the first case, shadows can provide additional geometric and semantic cues about shape and position of its casting object as well as the localization of the light source. Although the previous information can be extracted from static images as well as video sequences, the main focus in the second area is usually change detection, scene matching or surveillance. In this context, a shadow can severely affect with the analysis and interpretation of the scene. The work done in the thesis is focused on the second case, thus it addresses the problem of detection and removal of moving cast shadows in video sequences in order to enhance the detection of moving object.
|
|
|
B. Gotschy, Matthias S. Keil, H. Klos, & I. Rystau. (1994). Transition from static to dynamic Jahn-Teller distortion in (P(C6 H5)4)2 C60|. Solid State Communications, 92(12), 935–938.
|
|
|
B. Moghaddam, David Guillamet, & Jordi Vitria. (2003). Local Appearance-Based Models using High-Order Statistics of Image Features. In IEEE International Conference on Computer Vision and Pattern Recognition (CVPR).
|
|
|
Bart M. Ter Haar Romeny, W. Niessen, J. Weickert, P. Van Roermund, W. Van Enk, Antonio Lopez, et al. (1996). Orientation detection of trabecular bone. In Biophysics and Molecular Biology, International Biophysics Congress. Volume 65, pgs. P–H5–43.
|
|
|
Beata Megyesi, Alicia Fornes, Nils Kopal, & Benedek Lang. (2024). Historical Cryptology. In Learning and Experiencing Cryptography with CrypTool and SageMath.
Abstract: Historical cryptology studies (original) encrypted manuscripts, often handwritten sources, produced in our history. These historical sources can be found in archives, often hidden without any indexing and therefore hard to locate. Once found they need to be digitized and turned into a machine-readable text format before they can be deciphered with computational methods. The focus of historical cryptology is not primarily the development of sophisticated algorithms for decipherment, but rather the entire process of analysis of the encrypted source from collection and digitization to transcription and decryption. The process also includes the interpretation and contextualization of the message set in its historical context. There are many challenges on the way, such as mistakes made by the scribe, errors made by the transcriber, damaged pages, handwriting styles that are difficult to interpret, historical languages from various time periods, and hidden underlying language of the message. Ciphertexts vary greatly in terms of their code system and symbol sets used with more or less distinguishable symbols. Ciphertexts can be embedded in clearly written text, or shorter or longer sequences of cleartext can be embedded in the ciphertext. The ciphers used mostly in historical times are substitutions (simple, homophonic, or polyphonic), with or without nomenclatures, encoded as digits or symbol sequences, with or without spaces. So the circumstances are different from those in modern cryptography which focuses on methods (algorithms) and their strengths and assumes that the algorithm is applied correctly. For both historical and modern cryptology, attack vectors outside the algorithm are applied like implementation flaws and side-channel attacks. In this chapter, we give an introduction to the field of historical cryptology and present an overview of how researchers today process historical encrypted sources.
|
|