|   | 
Details
   web
Records Links
Author Naila Murray; Maria Vanrell; Xavier Otazu; C. Alejandro Parraga edit   pdf
doi  openurl
Title Low-level SpatioChromatic Grouping for Saliency Estimation Type Journal Article
Year 2013 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
Volume 35 Issue 11 Pages 2810-2816  
Keywords  
Abstract We propose a saliency model termed SIM (saliency by induction mechanisms), which is based on a low-level spatiochromatic model that has successfully predicted chromatic induction phenomena. In so doing, we hypothesize that the low-level visual mechanisms that enhance or suppress image detail are also responsible for making some image regions more salient. Moreover, SIM adds geometrical grouplets to enhance complex low-level features such as corners, and suppress relatively simpler features such as edges. Since our model has been fitted on psychophysical chromatic induction data, it is largely nonparametric. SIM outperforms state-of-the-art methods in predicting eye fixations on two datasets and using two metrics.  
Address (down)  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 0162-8828 ISBN Medium  
Area Expedition Conference  
Notes CIC; 600.051; 600.052; 605.203 Approved no  
Call Number Admin @ si @ MVO2013 Serial 2289  
Permanent link to this record
 

 
Author Albert Gordo edit  openurl
Title A Cyclic Page Layout Descriptor for Document Classification & Retrieval Type Report
Year 2009 Publication CVC Technical Report Abbreviated Journal  
Volume 128 Issue Pages  
Keywords  
Abstract  
Address (down)  
Corporate Author Computer Vision Center Thesis Master's thesis  
Publisher Place of Publication Bellaterra, Barcelona Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC;DAG Approved no  
Call Number Admin @ si @ Gor2009 Serial 2387  
Permanent link to this record
 

 
Author Javier Vazquez; J. Kevin O'Regan; Maria Vanrell; Graham D. Finlayson edit  url
doi  openurl
Title A new spectrally sharpened basis to predict colour naming, unique hues, and hue cancellation Type Journal Article
Year 2012 Publication Journal of Vision Abbreviated Journal VSS  
Volume 12 Issue 6 (7) Pages 1-14  
Keywords  
Abstract When light is reflected off a surface, there is a linear relation between the three human photoreceptor responses to the incoming light and the three photoreceptor responses to the reflected light. Different colored surfaces have different linear relations. Recently, Philipona and O'Regan (2006) showed that when this relation is singular in a mathematical sense, then the surface is perceived as having a highly nameable color. Furthermore, white light reflected by that surface is perceived as corresponding precisely to one of the four psychophysically measured unique hues. However, Philipona and O'Regan's approach seems unrelated to classical psychophysical models of color constancy. In this paper we make this link. We begin by transforming cone sensors to spectrally sharpened counterparts. In sharp color space, illumination change can be modeled by simple von Kries type scalings of response values within each of the spectrally sharpened response channels. In this space, Philipona and O'Regan's linear relation is captured by a simple Land-type color designator defined by dividing reflected light by incident light. This link between Philipona and O'Regan's theory and Land's notion of color designator gives the model biological plausibility. We then show that Philipona and O'Regan's singular surfaces are surfaces which are very close to activating only one or only two of such newly defined spectrally sharpened sensors, instead of the usual three. Closeness to zero is quantified in a new simplified measure of singularity which is also shown to relate to the chromaticness of colors. As in Philipona and O'Regan's original work, our new theory accounts for a large variety of psychophysical color data.  
Address (down)  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ VOV2012 Serial 1998  
Permanent link to this record
 

 
Author Javier Vazquez; Maria Vanrell; Ramon Baldrich; Francesc Tous edit  url
doi  openurl
Title Color Constancy by Category Correlation Type Journal Article
Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
Volume 21 Issue 4 Pages 1997-2007  
Keywords  
Abstract Finding color representations which are stable to illuminant changes is still an open problem in computer vision. Until now most approaches have been based on physical constraints or statistical assumptions derived from the scene, while very little attention has been paid to the effects that selected illuminants have
on the final color image representation. The novelty of this work is to propose
perceptual constraints that are computed on the corrected images. We define the
category hypothesis, which weights the set of feasible illuminants according to their ability to map the corrected image onto specific colors. Here we choose these colors as the universal color categories related to basic linguistic terms which have been psychophysically measured. These color categories encode natural color statistics, and their relevance across different cultures is indicated by the fact that they have received a common color name. From this category hypothesis we propose a fast implementation that allows the sampling of a large set of illuminants. Experiments prove that our method rivals current state-of-art performance without the need for training algorithmic parameters. Additionally, the method can be used as a framework to insert top-down information from other sources, thus opening further research directions in solving for color constancy.
 
Address (down)  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1057-7149 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ VVB2012 Serial 1999  
Permanent link to this record
 

 
Author Graham D. Finlayson; Javier Vazquez; Sabine Süsstrunk; Maria Vanrell edit   pdf
url  doi
openurl 
Title Spectral sharpening by spherical sampling Type Journal Article
Year 2012 Publication Journal of the Optical Society of America A Abbreviated Journal JOSA A  
Volume 29 Issue 7 Pages 1199-1210  
Keywords  
Abstract There are many works in color that assume illumination change can be modeled by multiplying sensor responses by individual scaling factors. The early research in this area is sometimes grouped under the heading “von Kries adaptation”: the scaling factors are applied to the cone responses. In more recent studies, both in psychophysics and in computational analysis, it has been proposed that scaling factors should be applied to linear combinations of the cones that have narrower support: they should be applied to the so-called “sharp sensors.” In this paper, we generalize the computational approach to spectral sharpening in three important ways. First, we introduce spherical sampling as a tool that allows us to enumerate in a principled way all linear combinations of the cones. This allows us to, second, find the optimal sharp sensors that minimize a variety of error measures including CIE Delta E (previous work on spectral sharpening minimized RMS) and color ratio stability. Lastly, we extend the spherical sampling paradigm to the multispectral case. Here the objective is to model the interaction of light and surface in terms of color signal spectra. Spherical sampling is shown to improve on the state of the art.  
Address (down)  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1084-7529 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ FVS2012 Serial 2000  
Permanent link to this record
 

 
Author Naila Murray; Sandra Skaff; Luca Marchesotti; Florent Perronnin edit  url
openurl 
Title Towards automatic and flexible concept transfer Type Journal Article
Year 2012 Publication Computers and Graphics Abbreviated Journal CG  
Volume 36 Issue 6 Pages 622–634  
Keywords  
Abstract This paper introduces a novel approach to automatic, yet flexible, image concepttransfer; examples of concepts are “romantic”, “earthy”, and “luscious”. The presented method modifies the color content of an input image given only a concept specified by a user in natural language, thereby requiring minimal user input. This method is particularly useful for users who are aware of the message they wish to convey in the transferred image while being unsure of the color combination needed to achieve the corresponding transfer. Our framework is flexible for two reasons. First, the user may select one of two modalities to map input image chromaticities to target concept chromaticities depending on the level of photo-realism required. Second, the user may adjust the intensity level of the concepttransfer to his/her liking with a single parameter. The proposed method uses a convex clustering algorithm, with a novel pruning mechanism, to automatically set the complexity of models of chromatic content. Results show that our approach yields transferred images which effectively represent concepts as confirmed by a user study.  
Address (down)  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 0097-8493 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ MSM2012 Serial 2002  
Permanent link to this record
 

 
Author Joost Van de Weijer; Robert Benavente; Maria Vanrell; Cordelia Schmid; Ramon Baldrich; Jacob Verbeek; Diane Larlus edit   pdf
openurl 
Title Color Naming Type Book Chapter
Year 2012 Publication Color in Computer Vision: Fundamentals and Applications Abbreviated Journal  
Volume Issue 17 Pages 287-317  
Keywords  
Abstract  
Address (down)  
Corporate Author Thesis  
Publisher John Wiley & Sons, Ltd. Place of Publication Editor Theo Gevers;Arjan Gijsenij;Joost Van de Weijer;Jan-Mark Geusebroek  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ WBV2012 Serial 2063  
Permanent link to this record
 

 
Author Ernest Valveny; Robert Benavente; Agata Lapedriza; Miquel Ferrer; Jaume Garcia; Gemma Sanchez edit   pdf
doi  openurl
Title Adaptation of a computer programming course to the EXHE requirements: evaluation five years later Type Miscellaneous
Year 2012 Publication European Journal of Engineering Education Abbreviated Journal  
Volume 37 Issue 3 Pages 243-254  
Keywords  
Abstract  
Address (down)  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes DAG; CIC; OR; invisible;MV Approved no  
Call Number Admin @ si @ VBL2012 Serial 2070  
Permanent link to this record
 

 
Author Abel Gonzalez-Garcia; Robert Benavente; Olivier Penacchio; Javier Vazquez; Maria Vanrell; C. Alejandro Parraga edit   pdf
doi  isbn
openurl 
Title Coloresia: An Interactive Colour Perception Device for the Visually Impaired Type Book Chapter
Year 2013 Publication Multimodal Interaction in Image and Video Applications Abbreviated Journal  
Volume 48 Issue Pages 47-66  
Keywords  
Abstract A significative percentage of the human population suffer from impairments in their capacity to distinguish or even see colours. For them, everyday tasks like navigating through a train or metro network map becomes demanding. We present a novel technique for extracting colour information from everyday natural stimuli and presenting it to visually impaired users as pleasant, non-invasive sound. This technique was implemented inside a Personal Digital Assistant (PDA) portable device. In this implementation, colour information is extracted from the input image and categorised according to how human observers segment the colour space. This information is subsequently converted into sound and sent to the user via speakers or headphones. In the original implementation, it is possible for the user to send its feedback to reconfigure the system, however several features such as these were not implemented because the current technology is limited.We are confident that the full implementation will be possible in the near future as PDA technology improves.  
Address (down)  
Corporate Author Thesis  
Publisher Springer Berlin Heidelberg Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1868-4394 ISBN 978-3-642-35931-6 Medium  
Area Expedition Conference  
Notes CIC; 600.052; 605.203 Approved no  
Call Number Admin @ si @ GBP2013 Serial 2266  
Permanent link to this record
 

 
Author Olivier Penacchio; Xavier Otazu; Laura Dempere-Marco edit   pdf
doi  openurl
Title A Neurodynamical Model of Brightness Induction in V1 Type Journal Article
Year 2013 Publication PloS ONE Abbreviated Journal Plos  
Volume 8 Issue 5 Pages e64086  
Keywords  
Abstract Brightness induction is the modulation of the perceived intensity of an area by the luminance of surrounding areas. Recent neurophysiological evidence suggests that brightness information might be explicitly represented in V1, in contrast to the more common assumption that the striate cortex is an area mostly responsive to sensory information. Here we investigate possible neural mechanisms that offer a plausible explanation for such phenomenon. To this end, a neurodynamical model which is based on neurophysiological evidence and focuses on the part of V1 responsible for contextual influences is presented. The proposed computational model successfully accounts for well known psychophysical effects for static contexts and also for brightness induction in dynamic contexts defined by modulating the luminance of surrounding areas. This work suggests that intra-cortical interactions in V1 could, at least partially, explain brightness induction effects and reveals how a common general architecture may account for several different fundamental processes, such as visual saliency and brightness induction, which emerge early in the visual processing pathway.  
Address (down)  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ POD2013 Serial 2242  
Permanent link to this record
 

 
Author Susana Alvarez; Maria Vanrell edit   pdf
url  doi
openurl 
Title Texton theory revisited: a bag-of-words approach to combine textons Type Journal Article
Year 2012 Publication Pattern Recognition Abbreviated Journal PR  
Volume 45 Issue 12 Pages 4312-4325  
Keywords  
Abstract The aim of this paper is to revisit an old theory of texture perception and
update its computational implementation by extending it to colour. With this in mind we try to capture the optimality of perceptual systems. This is achieved in the proposed approach by sharing well-known early stages of the visual processes and extracting low-dimensional features that perfectly encode adequate properties for a large variety of textures without needing further learning stages. We propose several descriptors in a bag-of-words framework that are derived from different quantisation models on to the feature spaces. Our perceptual features are directly given by the shape and colour attributes of image blobs, which are the textons. In this way we avoid learning visual words and directly build the vocabularies on these lowdimensionaltexton spaces. Main differences between proposed descriptors rely on how co-occurrence of blob attributes is represented in the vocabularies. Our approach overcomes current state-of-art in colour texture description which is proved in several experiments on large texture datasets.
 
Address (down)  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 0031-3203 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ AlV2012a Serial 2130  
Permanent link to this record
 

 
Author Javier Vazquez; Robert Benavente; Maria Vanrell edit   pdf
url  openurl
Title Naming constraints constancy Type Conference Article
Year 2012 Publication 2nd Joint AVA / BMVA Meeting on Biological and Machine Vision Abbreviated Journal  
Volume Issue Pages  
Keywords  
Abstract Different studies have shown that languages from industrialized cultures
share a set of 11 basic colour terms: red, green, blue, yellow, pink, purple, brown, orange, black, white, and grey (Berlin & Kay, 1969, Basic Color Terms, University of California Press)( Kay & Regier, 2003, PNAS, 100, 9085-9089). Some of these studies have also reported the best representatives or focal values of each colour (Boynton and Olson, 1990, Vision Res. 30,1311–1317), (Sturges and Whitfield, 1995, CRA, 20:6, 364–376). Some further studies have provided us with fuzzy datasets for color naming by asking human observers to rate colours in terms of membership values (Benavente -et al-, 2006, CRA. 31:1, 48–56,). Recently, a computational model based on these human ratings has been developed (Benavente -et al-, 2008, JOSA-A, 25:10, 2582-2593). This computational model follows a fuzzy approach to assign a colour name to a particular RGB value. For example, a pixel with a value (255,0,0) will be named 'red' with membership 1, while a cyan pixel with a RGB value of (0, 200, 200) will be considered to be 0.5 green and 0.5 blue. In this work, we show how this colour naming paradigm can be applied to different computer vision tasks. In particular, we report results in colour constancy (Vazquez-Corral -et al-, 2012, IEEE TIP, in press) showing that the classical constraints on either illumination or surface reflectance can be substituted by
the statistical properties encoded in the colour names. [Supported by projects TIN2010-21771-C02-1, CSD2007-00018].
 
Address (down)  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference AV A  
Notes CIC Approved no  
Call Number Admin @ si @ VBV2012 Serial 2131  
Permanent link to this record
 

 
Author Xavier Otazu; Olivier Penacchio; Laura Dempere-Marco edit   pdf
url  openurl
Title An investigation into plausible neural mechanisms related to the the CIWaM computational model for brightness induction Type Conference Article
Year 2012 Publication 2nd Joint AVA / BMVA Meeting on Biological and Machine Vision Abbreviated Journal  
Volume Issue Pages  
Keywords  
Abstract Brightness induction is the modulation of the perceived intensity of an area by the luminance of surrounding areas. From a purely computational perspective, we built a low-level computational model (CIWaM) of early sensory processing based on multi-resolution wavelets with the aim of replicating brightness and colour (Otazu et al., 2010, Journal of Vision, 10(12):5) induction effects. Furthermore, we successfully used the CIWaM architecture to define a computational saliency model (Murray et al, 2011, CVPR, 433-440; Vanrell et al, submitted to AVA/BMVA'12). From a biological perspective, neurophysiological evidence suggests that perceived brightness information may be explicitly represented in V1. In this work we investigate possible neural mechanisms that offer a plausible explanation for such effects. To this end, we consider the model by Z.Li (Li, 1999, Network:Comput. Neural Syst., 10, 187-212) which is based on biological data and focuses on the part of V1 responsible for contextual influences, namely, layer 2-3 pyramidal cells, interneurons, and horizontal intracortical connections. This model has proven to account for phenomena such as visual saliency, which share with brightness induction the relevant effect of contextual influences (the ones modelled by CIWaM). In the proposed model, the input to the network is derived from a complete multiscale and multiorientation wavelet decomposition taken from the computational model (CIWaM).
This model successfully accounts for well known pyschophysical effects (among them: the White's and modied White's effects, the Todorovic, Chevreul, achromatic ring patterns, and grating induction effects) for static contexts and also for brigthness induction in dynamic contexts defined by modulating the luminance of surrounding areas. From a methodological point of view, we conclude that the results obtained by the computational model (CIWaM) are compatible with the ones obtained by the neurodynamical model proposed here.
 
Address (down)  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference AV A  
Notes CIC Approved no  
Call Number Admin @ si @ OPD2012a Serial 2132  
Permanent link to this record
 

 
Author David Geronimo; Joan Serrat; Antonio Lopez; Ramon Baldrich edit   pdf
doi  openurl
Title Traffic sign recognition for computer vision project-based learning Type Journal Article
Year 2013 Publication IEEE Transactions on Education Abbreviated Journal T-EDUC  
Volume 56 Issue 3 Pages 364-371  
Keywords traffic signs  
Abstract This paper presents a graduate course project on computer vision. The aim of the project is to detect and recognize traffic signs in video sequences recorded by an on-board vehicle camera. This is a demanding problem, given that traffic sign recognition is one of the most challenging problems for driving assistance systems. Equally, it is motivating for the students given that it is a real-life problem. Furthermore, it gives them the opportunity to appreciate the difficulty of real-world vision problems and to assess the extent to which this problem can be solved by modern computer vision and pattern classification techniques taught in the classroom. The learning objectives of the course are introduced, as are the constraints imposed on its design, such as the diversity of students' background and the amount of time they and their instructors dedicate to the course. The paper also describes the course contents, schedule, and how the project-based learning approach is applied. The outcomes of the course are discussed, including both the students' marks and their personal feedback.  
Address (down)  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 0018-9359 ISBN Medium  
Area Expedition Conference  
Notes ADAS; CIC Approved no  
Call Number Admin @ si @ GSL2013; ADAS @ adas @ Serial 2160  
Permanent link to this record
 

 
Author Jaime Moreno; Xavier Otazu edit  doi
isbn  openurl
Title Image compression algorithm based on Hilbert scanning of embedded quadTrees: an introduction of the Hi-SET coder Type Conference Article
Year 2011 Publication IEEE International Conference on Multimedia and Expo Abbreviated Journal  
Volume Issue Pages 1-6  
Keywords  
Abstract In this work we present an effective and computationally simple algorithm for image compression based on Hilbert Scanning of Embedded quadTrees (Hi-SET). It allows to represent an image as an embedded bitstream along a fractal function. Embedding is an important feature of modern image compression algorithms, in this way Salomon in [1, pg. 614] cite that another feature and perhaps a unique one is the fact of achieving the best quality for the number of bits input by the decoder at any point during the decoding. Hi-SET possesses also this latter feature. Furthermore, the coder is based on a quadtree partition strategy, that applied to image transformation structures such as discrete cosine or wavelet transform allows to obtain an energy clustering both in frequency and space. The coding algorithm is composed of three general steps, using just a list of significant pixels. The implementation of the proposed coder is developed for gray-scale and color image compression. Hi-SET compressed images are, on average, 6.20dB better than the ones obtained by other compression techniques based on the Hilbert scanning. Moreover, Hi-SET improves the image quality in 1.39dB and 1.00dB in gray-scale and color compression, respectively, when compared with JPEG2000 coder.  
Address (down)  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1945-7871 ISBN 978-1-61284-348-3 Medium  
Area Expedition Conference ICME  
Notes CIC Approved no  
Call Number Admin @ si @ MoO2011a Serial 2176  
Permanent link to this record
 

 
Author Jaime Moreno; Xavier Otazu edit  openurl
Title Image coder based on Hilbert scanning of embedded quadTrees Type Conference Article
Year 2011 Publication Data Compression Conference Abbreviated Journal  
Volume Issue Pages 470-470  
Keywords  
Abstract In this work we present an effective and computationally simple algorithm for image compression based on Hilbert Scanning of Embedded quadTrees (Hi-SET). It allows to represent an image as an embedded bitstream along a fractal function. Embedding is an important feature of modern image compression algorithms, in this way Salomon in [1, pg. 614] cite that another feature and perhaps a unique one is the fact of achieving the best quality for the number of bits input by the decoder at any point during the decoding. Hi-SET possesses also this latter feature. Furthermore, the coder is based on a quadtree partition strategy, that applied to image transformation structures such as discrete cosine or wavelet transform allows to obtain an energy clustering both in frequency and space. The coding algorithm is composed of three general steps, using just a list of significant pixels.  
Address (down)  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference DCC  
Notes CIC Approved no  
Call Number Admin @ si @ MoO2011b Serial 2177  
Permanent link to this record
 

 
Author Xavier Otazu; Olivier Penacchio; Laura Dempere-Marco edit   pdf
doi  openurl
Title Brightness induction by contextual influences in V1: a neurodynamical account Type Abstract
Year 2012 Publication Journal of Vision Abbreviated Journal VSS  
Volume 12 Issue 9 Pages  
Keywords  
Abstract Brightness induction is the modulation of the perceived intensity of an area by the luminance of surrounding areas and reveals fundamental properties of neural organization in the visual system. Several phenomenological models have been proposed that successfully account for psychophysical data (Pessoa et al. 1995, Blakeslee and McCourt 2004, Barkan et al. 2008, Otazu et al. 2008).
Neurophysiological evidence suggests that brightness information is explicitly represented in V1 and neuronal response modulations have been observed followingluminance changes outside their receptive fields (Rossi and Paradiso, 1999).
In this work we investigate possible neural mechanisms that offer a plausible explanation for such effects. To this end, we consider the model by Z.Li (1999) which is based on biological data and focuses on the part of V1 responsible for contextual influences, namely, layer 2–3 pyramidal cells, interneurons, and horizontal intracortical connections. This model has proven to account for phenomena such as contour detection and preattentive segmentation, which share with brightness induction the relevant effect of contextual influences. In our model, the input to the network is derived from a complete multiscale and multiorientation wavelet decomposition which makes it possible to recover an image reflecting the perceived intensity. The proposed model successfully accounts for well known pyschophysical effects (among them: the White's and modified White's effects, the Todorović, Chevreul, achromatic ring patterns, and grating induction effects). Our work suggests that intra-cortical interactions in the primary visual cortex could partially explain perceptual brightness induction effects and reveals how a common general architecture may account for several different fundamental processes emerging early in the visual pathway.
 
Address (down)  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ OPD2012b Serial 2178  
Permanent link to this record
 

 
Author Xavier Otazu edit   pdf
url  openurl
Title Perceptual tone-mapping operator based on multiresolution contrast decomposition Type Abstract
Year 2012 Publication Perception Abbreviated Journal PER  
Volume 41 Issue Pages 86  
Keywords  
Abstract Tone-mapping operators (TMO) are used to display high dynamic range(HDR) images in low dynamic range (LDR) displays. Many computational and biologically inspired approaches have been used in the literature, being many of them based on multiresolution decompositions. In this work, a simple two stage model for TMO is presented. The first stage is a novel multiresolution contrast decomposition, which is inspired in a pyramidal contrast decomposition (Peli, 1990 Journal of the Optical Society of America7(10), 2032-2040).
This novel multiresolution decomposition represents the Michelson contrast of the image at different spatial scales. This multiresolution contrast representation, applied on the intensity channel of an opponent colour decomposition, is processed by a non-linear saturating model of V1 neurons (Albrecht et al, 2002 Journal ofNeurophysiology 88(2) 888-913). This saturation model depends on the visual frequency, and it has been modified in order to include information from the extended Contrast Sensitivity Function (e-CSF) (Otazu et al, 2010 Journal ofVision10(12) 5).
A set of HDR images in Radiance RGBE format (from CIS HDR Photographic Survey and Greg Ward database) have been used to test the model, obtaining a set of LDR images. The resulting LDR images do not show the usual halo or color modification artifacts.
 
Address (down)  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 0301-0066 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ Ota2012 Serial 2179  
Permanent link to this record