toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hugo Bertiche; Meysam Madadi; Sergio Escalera edit   pdf
openurl 
  Title CLOTH3D: Clothed 3D Humans Type Conference Article
  Year 2020 Publication 16th European Conference on Computer Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This work presents CLOTH3D, the first big scale synthetic dataset of 3D clothed human sequences. CLOTH3D contains a large variability on garment type, topology, shape, size, tightness and fabric. Clothes are simulated on top of thousands of different pose sequences and body shapes, generating realistic cloth dynamics. We provide the dataset with a generative model for cloth generation. We propose a Conditional Variational Auto-Encoder (CVAE) based on graph convolutions (GCVAE) to learn garment latent spaces. This allows for realistic generation of 3D garments on top of SMPL model for any pose and shape.  
  Address (down) Virtual; August 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECCV  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ BME2020 Serial 3519  
Permanent link to this record
 

 
Author Reza Azad; Maryam Asadi-Aghbolaghi; Mahmood Fathy; Sergio Escalera edit  openurl
  Title Attention Deeplabv3+: Multi-level Context Attention Mechanism for Skin Lesion Segmentation Type Conference Article
  Year 2020 Publication Bioimage computation workshop Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address (down) Virtual; August 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECCVW  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ AAF2020 Serial 3520  
Permanent link to this record
 

 
Author Martin Menchon; Estefania Talavera; Jose M. Massa; Petia Radeva edit   pdf
url  openurl
  Title Behavioural Pattern Discovery from Collections of Egocentric Photo-Streams Type Conference Article
  Year 2020 Publication ECCV Workshops Abbreviated Journal  
  Volume 12538 Issue Pages 469-484  
  Keywords  
  Abstract The automatic discovery of behaviour is of high importance when aiming to assess and improve the quality of life of people. Egocentric images offer a rich and objective description of the daily life of the camera wearer. This work proposes a new method to identify a person’s patterns of behaviour from collected egocentric photo-streams. Our model characterizes time-frames based on the context (place, activities and environment objects) that define the images composition. Based on the similarity among the time-frames that describe the collected days for a user, we propose a new unsupervised greedy method to discover the behavioural pattern set based on a novel semantic clustering approach. Moreover, we present a new score metric to evaluate the performance of the proposed algorithm. We validate our method on 104 days and more than 100k images extracted from 7 users. Results show that behavioural patterns can be discovered to characterize the routine of individuals and consequently their lifestyle.  
  Address (down) Virtual; August 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECCVW  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ MTM2020 Serial 3528  
Permanent link to this record
 

 
Author Henry Velesaca; Steven Araujo; Patricia Suarez; Angel Sanchez; Angel Sappa edit   pdf
openurl 
  Title Off-the-Shelf Based System for Urban Environment Video Analytics Type Conference Article
  Year 2020 Publication 27th International Conference on Systems, Signals and Image Processing Abbreviated Journal  
  Volume Issue Pages  
  Keywords greenhouse gases; carbon footprint; object detection; object tracking; website framework; off-the-shelf video analytics  
  Abstract This paper presents the design and implementation details of a system build-up by using off-the-shelf algorithms for urban video analytics. The system allows the connection to
public video surveillance camera networks to obtain the necessary information to generate statistics from urban scenarios (e.g., amount of vehicles, type of cars, direction, numbers of persons, etc.). The obtained information could be used not only for traffic management but also to estimate the carbon footprint of urban scenarios. As a case study, a university campus is selected to evaluate the performance of the proposed system. The system is implemented in a modular way so that it is being used as a testbed to evaluate different algorithms. Implementation results are provided showing the validity and utility of the proposed approach.
 
  Address (down) Virtual IWSSIP  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IWSSIP  
  Notes MSIAU; 600.130; 601.349; 600.122 Approved no  
  Call Number Admin @ si @ VAS2020 Serial 3429  
Permanent link to this record
 

 
Author Arnau Baro; Alicia Fornes; Carles Badal edit   pdf
openurl 
  Title Handwritten Historical Music Recognition by Sequence-to-Sequence with Attention Mechanism Type Conference Article
  Year 2020 Publication 17th International Conference on Frontiers in Handwriting Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Despite decades of research in Optical Music Recognition (OMR), the recognition of old handwritten music scores remains a challenge because of the variabilities in the handwriting styles, paper degradation, lack of standard notation, etc. Therefore, the research in OMR systems adapted to the particularities of old manuscripts is crucial to accelerate the conversion of music scores existing in archives into digital libraries, fostering the dissemination and preservation of our music heritage. In this paper we explore the adaptation of sequence-to-sequence models with attention mechanism (used in translation and handwritten text recognition) and the generation of specific synthetic data for recognizing old music scores. The experimental validation demonstrates that our approach is promising, especially when compared with long short-term memory neural networks.  
  Address (down) Virtual ICFHR; September 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICFHR  
  Notes DAG; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ BFB2020 Serial 3448  
Permanent link to this record
 

 
Author Lei Kang; Pau Riba; Marçal Rusiñol; Alicia Fornes; Mauricio Villegas edit   pdf
openurl 
  Title Distilling Content from Style for Handwritten Word Recognition Type Conference Article
  Year 2020 Publication 17th International Conference on Frontiers in Handwriting Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Despite the latest transcription accuracies reached using deep neural network architectures, handwritten text recognition still remains a challenging problem, mainly because of the large inter-writer style variability. Both augmenting the training set with artificial samples using synthetic fonts, and writer adaptation techniques have been proposed to yield more generic approaches aimed at dodging style unevenness. In this work, we take a step closer to learn style independent features from handwritten word images. We propose a novel method that is able to disentangle the content and style aspects of input images by jointly optimizing a generative process and a handwritten
word recognizer. The generator is aimed at transferring writing style features from one sample to another in an image-to-image translation approach, thus leading to a learned content-centric features that shall be independent to writing style attributes.
Our proposed recognition model is able then to leverage such writer-agnostic features to reach better recognition performances. We advance over prior training strategies and demonstrate with qualitative and quantitative evaluations the performance of both
the generative process and the recognition efficiency in the IAM dataset.
 
  Address (down) Virtual ICFHR; September 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICFHR  
  Notes DAG; 600.129; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ KRR2020 Serial 3425  
Permanent link to this record
 

 
Author Xialei Liu; Chenshen Wu; Mikel Menta; Luis Herranz; Bogdan Raducanu; Andrew Bagdanov; Shangling Jui; Joost Van de Weijer edit   pdf
openurl 
  Title Generative Feature Replay for Class-Incremental Learning Type Conference Article
  Year 2020 Publication CLVISION – Workshop on Continual Learning in Computer Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Humans are capable of learning new tasks without forgetting previous ones, while neural networks fail due to catastrophic forgetting between new and previously-learned tasks. We consider a class-incremental setting which means that the task-ID is unknown at inference time. The imbalance between old and new classes typically results in a bias of the network towards the newest ones. This imbalance problem can either be addressed by storing exemplars from previous tasks, or by using image replay methods. However, the latter can only be applied to toy datasets since image generation for complex datasets is a hard problem.
We propose a solution to the imbalance problem based on generative feature replay which does not require any exemplars. To do this, we split the network into two parts: a feature extractor and a classifier. To prevent forgetting, we combine generative feature replay in the classifier with feature distillation in the feature extractor. Through feature generation, our method reduces the complexity of generative replay and prevents the imbalance problem. Our approach is computationally efficient and scalable to large datasets. Experiments confirm that our approach achieves state-of-the-art results on CIFAR-100 and ImageNet, while requiring only a fraction of the storage needed for exemplar-based continual learning
 
  Address (down) Virtual CVPR  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes LAMP; 601.309; 602.200; 600.141; 600.120 Approved no  
  Call Number Admin @ si @ LWM2020 Serial 3419  
Permanent link to this record
 

 
Author Yaxing Wang; Abel Gonzalez-Garcia; David Berga; Luis Herranz; Fahad Shahbaz Khan; Joost Van de Weijer edit   pdf
openurl 
  Title MineGAN: effective knowledge transfer from GANs to target domains with few images Type Conference Article
  Year 2020 Publication 33rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract One of the attractive characteristics of deep neural networks is their ability to transfer knowledge obtained in one domain to other related domains. As a result, high-quality networks can be trained in domains with relatively little training data. This property has been extensively studied for discriminative networks but has received significantly less attention for generative models. Given the often enormous effort required to train GANs, both computationally as well as in the dataset collection, the re-use of pretrained GANs is a desirable objective. We propose a novel knowledge transfer method for generative models based on mining the knowledge that is most beneficial to a specific target domain, either from a single or multiple pretrained GANs. This is done using a miner network that identifies which part of the generative distribution of each pretrained GAN outputs samples closest to the target domain. Mining effectively steers GAN sampling towards suitable regions of the latent space, which facilitates the posterior finetuning and avoids pathologies of other methods such as mode collapse and lack of flexibility. We perform experiments on several complex datasets using various GAN architectures (BigGAN, Progressive GAN) and show that the proposed method, called MineGAN, effectively transfers knowledge to domains with few target images, outperforming existing methods. In addition, MineGAN can successfully transfer knowledge from multiple pretrained GANs.  
  Address (down) Virtual CVPR  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes LAMP; 600.109; 600.141; 600.120 Approved no  
  Call Number Admin @ si @ WGB2020 Serial 3421  
Permanent link to this record
 

 
Author Lu Yu; Bartlomiej Twardowski; Xialei Liu; Luis Herranz; Kai Wang; Yongmai Cheng; Shangling Jui; Joost Van de Weijer edit   pdf
openurl 
  Title Semantic Drift Compensation for Class-Incremental Learning of Embeddings Type Conference Article
  Year 2020 Publication 33rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Class-incremental learning of deep networks sequentially increases the number of classes to be classified. During training, the network has only access to data of one task at a time, where each task contains several classes. In this setting, networks suffer from catastrophic forgetting which refers to the drastic drop in performance on previous tasks. The vast majority of methods have studied this scenario for classification networks, where for each new task the classification layer of the network must be augmented with additional weights to make room for the newly added classes. Embedding networks have the advantage that new classes can be naturally included into the network without adding new weights. Therefore, we study incremental learning for embedding networks. In addition, we propose a new method to estimate the drift, called semantic drift, of features and compensate for it without the need of any exemplars. We approximate the drift of previous tasks based on the drift that is experienced by current task data. We perform experiments on fine-grained datasets, CIFAR100 and ImageNet-Subset. We demonstrate that embedding networks suffer significantly less from catastrophic forgetting. We outperform existing methods which do not require exemplars and obtain competitive results compared to methods which store exemplars. Furthermore, we show that our proposed SDC when combined with existing methods to prevent forgetting consistently improves results.  
  Address (down) Virtual CVPR  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes LAMP; 600.141; 601.309; 602.200; 600.120 Approved no  
  Call Number Admin @ si @ YTL2020 Serial 3422  
Permanent link to this record
 

 
Author Henry Velesaca; Raul Mira; Patricia Suarez; Christian X. Larrea; Angel Sappa edit   pdf
url  openurl
  Title Deep Learning Based Corn Kernel Classification Type Conference Article
  Year 2020 Publication 1st International Workshop and Prize Challenge on Agriculture-Vision: Challenges & Opportunities for Computer Vision in Agriculture Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This paper presents a full pipeline to classify sample sets of corn kernels. The proposed approach follows a segmentation-classification scheme. The image segmentation is performed through a well known deep learningbased approach, the Mask R-CNN architecture, while the classification is performed hrough a novel-lightweight network specially designed for this task—good corn kernel, defective corn kernel and impurity categories are considered. As a second contribution, a carefully annotated multitouching corn kernel dataset has been generated. This dataset has been used for training the segmentation and the classification modules. Quantitative evaluations have been
performed and comparisons with other approaches are provided showing improvements with the proposed pipeline.
 
  Address (down) Virtual CVPR  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes MSIAU; 600.130; 600.122 Approved no  
  Call Number Admin @ si @ VMS2020 Serial 3430  
Permanent link to this record
 

 
Author Rafael E. Rivadeneira; Angel Sappa; Boris X. Vintimilla; Lin Guo; Jiankun Hou; Armin Mehri; Parichehr Behjati Ardakani; Heena Patel; Vishal Chudasama; Kalpesh Prajapati; Kishor P. Upla; Raghavendra Ramachandra; Kiran Raja; Christoph Busch; Feras Almasri; Olivier Debeir; Sabari Nathan; Priya Kansal; Nolan Gutierrez; Bardia Mojra; William J. Beksi edit   pdf
url  openurl
  Title Thermal Image Super-Resolution Challenge – PBVS 2020 Type Conference Article
  Year 2020 Publication 16h IEEE Workshop on Perception Beyond the Visible Spectrum Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This paper summarizes the top contributions to the first challenge on thermal image super-resolution (TISR), which was organized as part of the Perception Beyond the Visible Spectrum (PBVS) 2020 workshop. In this challenge, a novel thermal image dataset is considered together with state-of-the-art approaches evaluated under a common framework. The dataset used in the challenge consists of 1021 thermal images, obtained from three distinct thermal cameras at different resolutions (low-resolution, mid-resolution, and high-resolution), resulting in a total of 3063 thermal images. From each resolution, 951 images are used for training and 50 for testing while the 20 remaining images are used for two proposed evaluations. The first evaluation consists of downsampling the low-resolution, mid-resolution, and high-resolution thermal images by x2, x3 and x4 respectively, and comparing their super-resolution results with the corresponding ground truth images. The second evaluation is comprised of obtaining the x2 super-resolution from a given mid-resolution thermal image and comparing it with the corresponding semi-registered high-resolution thermal image. Out of 51 registered participants, 6 teams reached the final validation phase.  
  Address (down) Virtual CVPR  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes MSIAU; ISE; 600.119; 600.122 Approved no  
  Call Number Admin @ si @ RSV2020 Serial 3431  
Permanent link to this record
 

 
Author Ciprian Corneanu; Sergio Escalera; Aleix M. Martinez edit   pdf
openurl 
  Title Computing the Testing Error Without a Testing Set Type Conference Article
  Year 2020 Publication 33rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Oral. Paper award nominee.
Deep Neural Networks (DNNs) have revolutionized computer vision. We now have DNNs that achieve top (performance) results in many problems, including object recognition, facial expression analysis, and semantic segmentation, to name but a few. The design of the DNNs that achieve top results is, however, non-trivial and mostly done by trailand-error. That is, typically, researchers will derive many DNN architectures (i.e., topologies) and then test them on multiple datasets. However, there are no guarantees that the selected DNN will perform well in the real world. One can use a testing set to estimate the performance gap between the training and testing sets, but avoiding overfitting-to-thetesting-data is almost impossible. Using a sequestered testing dataset may address this problem, but this requires a constant update of the dataset, a very expensive venture. Here, we derive an algorithm to estimate the performance gap between training and testing that does not require any testing dataset. Specifically, we derive a number of persistent topology measures that identify when a DNN is learning to generalize to unseen samples. This allows us to compute the DNN’s testing error on unseen samples, even when we do not have access to them. We provide extensive experimental validation on multiple networks and datasets to demonstrate the feasibility of the proposed approach.
 
  Address (down) Virtual CVPR  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes HuPBA; no proj Approved no  
  Call Number Admin @ si @ CEM2020 Serial 3437  
Permanent link to this record
 

 
Author Swathikiran Sudhakaran; Sergio Escalera; Oswald Lanz edit   pdf
openurl 
  Title Gate-Shift Networks for Video Action Recognition Type Conference Article
  Year 2020 Publication 33rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Deep 3D CNNs for video action recognition are designed to learn powerful representations in the joint spatio-temporal feature space. In practice however, because of the large number of parameters and computations involved, they may under-perform in the lack of sufficiently large datasets for training them at scale. In this paper we introduce spatial gating in spatial-temporal decomposition of 3D kernels. We implement this concept with Gate-Shift Module (GSM). GSM is lightweight and turns a 2D-CNN into a highly efficient spatio-temporal feature extractor. With GSM plugged in, a 2D-CNN learns to adaptively route features through time and combine them, at almost no additional parameters and computational overhead. We perform an extensive evaluation of the proposed module to study its effectiveness in video action recognition, achieving state-of-the-art results on Something Something-V1 and Diving48 datasets, and obtaining competitive results on EPIC-Kitchens with far less model complexity.  
  Address (down) Virtual CVPR  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes HuPBA; no proj Approved no  
  Call Number Admin @ si @ SEL2020 Serial 3438  
Permanent link to this record
 

 
Author Eduardo Aguilar; Bhalaji Nagarajan; Rupali Khatun; Marc Bolaños; Petia Radeva edit  doi
openurl 
  Title Uncertainty Modeling and Deep Learning Applied to Food Image Analysis Type Conference Article
  Year 2020 Publication 13th International Joint Conference on Biomedical Engineering Systems and Technologies Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Recently, computer vision approaches specially assisted by deep learning techniques have shown unexpected advancements that practically solve problems that never have been imagined to be automatized like face recognition or automated driving. However, food image recognition has received a little effort in the Computer Vision community. In this project, we review the field of food image analysis and focus on how to combine with two challenging research lines: deep learning and uncertainty modeling. After discussing our methodology to advance in this direction, we comment potential research, social and economic impact of the research on food image analysis.  
  Address (down) Villetta; Malta; February 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference BIODEVICES  
  Notes MILAB Approved no  
  Call Number Admin @ si @ ANK2020 Serial 3526  
Permanent link to this record
 

 
Author Rafael E. Rivadeneira; Angel Sappa; Boris X. Vintimilla edit   pdf
openurl 
  Title Thermal Image Super-resolution: A Novel Architecture and Dataset Type Conference Article
  Year 2020 Publication 15th International Conference on Computer Vision Theory and Applications Abbreviated Journal  
  Volume Issue Pages 111-119  
  Keywords  
  Abstract This paper proposes a novel CycleGAN architecture for thermal image super-resolution, together with a large dataset consisting of thermal images at different resolutions. The dataset has been acquired using three thermal cameras at different resolutions, which acquire images from the same scenario at the same time. The thermal cameras are mounted in rig trying to minimize the baseline distance to make easier the registration problem.
The proposed architecture is based on ResNet6 as a Generator and PatchGAN as Discriminator. The novelty on the proposed unsupervised super-resolution training (CycleGAN) is possible due to the existence of aforementioned thermal images—images of the same scenario with different resolutions. The proposed approach is evaluated in the dataset and compared with classical bicubic interpolation. The dataset and the network are available.
 
  Address (down) Valletta; Malta; February 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference VISAPP  
  Notes MSIAU; 600.130; 600.122 Approved no  
  Call Number Admin @ si @ RSV2020 Serial 3432  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: