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Abstract: This paper proposes a novel CycleGAN architecture for thermal image super-resolution, together with a large

dataset consisting of thermal images at different resolutions. The dataset has been acquired using three thermal

cameras at different resolutions, which acquire images from the same scenario at the same time. The thermal

cameras are mounted in a rig trying to minimize the baseline distance to make easier the registration problem.

The proposed architecture is based on ResNet6 as a Generator and PatchGAN as a Discriminator. The novelty

on the proposed unsupervised super-resolution training (CycleGAN) is possible due to the existence of afore-

mentioned thermal images—images of the same scenario with different resolutions. The proposed approach

is evaluated in the dataset and compared with classical bicubic interpolation. The dataset and the network are

available.

1 INTRODUCTION

Image Super-resolution (SR) is an ill-posed problem
that refers to the estimation of high-resolution (HR)
image/video from a low-resolution (LR) one of the
same scene, usually with the use of digital image
processing and Machine Learning (ML) techniques;
SR has important applications in a wide range of do-
mains, such as surveillance and security (e.g., (Zhang
et al., 2010), (Rasti et al., 2016), (Shamsolmoali
et al., 2019)), medical imaging (e.g., (Mudunuri and
Biswas, 2015), (Robinson et al., 2017),(Huang et al.,
2019)), object detection in scene (e.g., (Girshick et al.,
2015)), among others.

In recent years, the development of deep learn-
ing techniques, have witnessed remarkable progress
achieving the performance on various benchmarks of
SR, where most of the state-of-the-art are focused on
the visible domain. Thermal images, which are in
the far-infrared (FIR) spectral band of the electromag-
netic spectrum, have become an important tool in sev-
eral fields (e.g., (Qi and Diakides, 2003), (Herrmann
et al., 2018)); unfortunately, due to physical limita-
tions of the technology and the high cost of thermal
cameras, these images tend to have a poor resolu-
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tion. This poor resolution could be improved by using
learning-based super-resolution methods, like those
used in the visible spectral domain.

Learning-based super-resolution methods gener-
ally work by down-sampling and adding both noise
and blur to the given image. These noisy and blurred
poor quality images, together with the given images
that are considered as the Ground Truths (GT), are
used in the learning process. The approaches men-
tion before have been mostly used to tackle the super-
resolution problem, however, there are few contribu-
tions where the learning process is based on the usage
of pair of images (low and high-resolution images)
obtained from different cameras. In the current work,
a novel learning-based super-resolution approach is
proposed to improve the resolution of the given ther-
mal images. Additionally, a large thermal image
dataset is acquired1, containing images with three dif-
ferent resolutions (low, mid, and high) obtained with
three different thermal cameras. The manuscript is
organized as follows. Section 2 presents works re-
lated to the topics tackled in the current work. The
proposed dataset is detailed in Section 3. Results are
provided in Section 4. Finally, conclusions are given
in Section 5.

1The dataset is available at http://www.cidis.espol.
edu.ec/es/dataset
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2 RELATED WORK

This section presents a summary of the most recent
and relevant contributions to the topics tackled in the
current work. Section 2.1 summarizes the state-of-
art on image super-resolution, mainly approaches pro-
posed for images from the visible spectrum. Then,
Section 2.2 describes recent thermal image datasets
freely available in the literature.

2.1 Image Super-resolution

The single image super-resolution (SISR) has been
extensively studied in the literature for decades, re-
cently using deep learning techniques better results,
with respect to conventional methods, are obtained.
The convolutional neural networks (CNNs) have
shown a great capability to improve the quality of SR
results. (Dong et al., 2015) firstly propose a SRCNN
to learn an end-to-end mapping, between the interpo-
lated LR images and their HR counterparts, archiv-
ing the state-of-the-art performance. For better per-
formance, FSRCNN (Dong et al., 2016) extracts fea-
ture maps at the low-resolution image and up-sample
the image at the last layer. Inspired in SRCNN, depth
networks start to appear stacking more convolutional
layers with residual learning (e.g., (Kim et al., 2016),
(Zhang et al., 2017)). In order to speed up the train-
ing process the authors in (Lim et al., 2017) pro-
pose EDSR, which removes the batch-normalization
layer and takes advantage of residual learning (He
et al., 2016). Most of the aforementioned CNNs aim
at minimizing the mean-square error (MSE) between
SR and GT images, tending to suppress the high-
frequency details in images. In other words, a super-
vised training process, using a pair of images, is fol-
lowed. The main limitation of such approaches lies in
the need of having pixel-wise registered SR and GT
images to compute the MSE. As mentioned above, in
most cases the SR image is obtained from an image
down-sampled from the GT.

Different unsupervised training processes have
been recently presented in the literature for applica-
tions such as: transferring style (Chang et al., 2018),
image colorization (Mehri and Sappa, 2019), image
enhancement (Chen et al., 2018), feature estimation
(Suarez et al., 2019), among others. All these ap-
proaches are based on two-way GANs (CycleGAN)
networks that are able to learn from unpaired data
sets (Zhu et al., 2017). CycleGAN learns to map im-
ages from one domain (source domain) onto another
domain (target domain); this functionality makes Cy-
cleGAN model appropriate for image SR estimation
when there is not a pixel-wise registration.

2.2 Datasets

There is a large variety of datasets available for vis-
ible spectrum image super-resolution, recently (Tim-
ofte et al., 2017) has released a high-quality (2K res-
olution) dataset DIV2K for visible image restoration,
which is split up into 800 images for training, 100
for testing and 100 for validation. Most of the ap-
proaches in the literature use common benchmark
datasets for evaluating their performance, all of them
in visible spectrum domain (e.g., Set5 (Bevilacqua
et al., 2012), Set14 (Zeyde et al., 2010), BSD300
(Martin et al., 2001), BSD500 (Arbel et al., 2011),
Urban100 (Huang et al., 2015), Manga109 (Matsui
et al., 2017), among others). These datasets provide
HR images under different categories (e.g., animal,
building, food, landscape, people, flora, fauna, car,
amongst others) with differ resolutions and amount
of images. Some of them even include LR and HR
image pairs.

During last years a few thermal datasets have been
published; in (Davis and Keck, 2005) a dataset con-
sisting of 284 thermal images, with a resolution of
360×240, is presented. This dataset is acquired with
a Raytheon 300D, in a University campus at a walk-
way and street intersection. It has been generated by
capturing images over several daytimes and weather
conditions. In (Olmeda et al., 2013) a thermal im-
age dataset, consisting of 15224 images with a reso-
lution 164×129 has been proposed. In this dataset,
the images have been acquired with an Indigo Omega
imager mounted on vehicle driven in outdoors urban
scenarios. In (Hwang et al., 2015) a FLIR-A35 is used
to acquire more than 41500 thermal images with a res-
olution of 320×256. A HR dataset was presented in
(Wu et al., 2014); the dataset contains seven different
scenes, most of them collected with a FLIR SC8000,
with a full resolution of 1024×1024. The dataset con-
sists of 63782 frames with thousands of recording ob-
jects; as far as we know, it is the dataset with the
largest amount of HR thermal images available in the
literature.

Most of the thermal image datasets mentioned
above are usually designed for object detection and
tracking; some others for applications on the biomet-
ric domain or medical applications; and just a few
of them are intended for super-resolution tasks. As
can be appreciated, most of the datasets contain low-
resolution images of the scene. Trying to overcome
the limitations mentioned above we have recently
presented a small thermal image dataset, which was
intended for training super-resolution learning-based
approaches (Rivadeneira et al., 2019); it contains a
total of 101 images taken with a single HR TAU2 ca-
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Figure 1: Example of thermal images acquired by each camera. (le f t) LR image with 160x120 native resolution from Axis
Domo P1290. (middle) MR image with 320x240 native resolution from Axis Q2901-E. (right) HR image with 640x480
resolution from FC-6320 FLIR (native resolution 640x512).

Figure 2: Panel with the cameras: a) Axis Domo P1290
(LR); b) Axis Q2901-E (MR); c) FC-6320 FLIR (HR); d)
Basler visible spectrum camera, which is not used in the
current work.

mera, having images with a native resolution of
640×512 pixels. Unfortunately, the amount of im-
ages in this dataset is not large enough to reach good
results when heavy SR learning-based approaches are
considered. It should be mentioned that all thermal
datasets mentioned above contain images obtained
from just one single thermal camera.

3 PROPOSED APPROACH

This section presents the approach proposed in the
current work for thermal image SR. Section 3.1 de-
scribes the dataset collected in outdoor scenarios with
three different thermal cameras; then Section 3.2
presents the architecture proposed for the unsuper-
vised super-resolution.

Figure 3: Mosaic with three different resolution thermal im-
ages from each camera for a visual comparison: (le f t) crop
from a LR image; (middle) crop from a MR image; (right)
crop from a HR image.

3.1 Data Collection

A challenging dataset has been created using three
different thermal cameras. The cameras were physi-
cally mounted in a panel as shown in Fig. 2; this struc-
ture has been placed in a vehicle to capture different
outdoor scenarios. Images were acquired at the same
time using a multi-thread develop script. Each cam-
era has a different resolution (low, mid, high); Fig.
3 shows a mosaic build up with the three different
resolutions. The cameras have been mounted trying
to minimize the baseline distance between the optical
axis so that the acquired images are almost registered.
The technical information of the cameras is shown in
Table 1 and a set of images obtained from these cam-
eras is depicted in Fig. 1.

In spite of the effort during the camera setup,
the obtained images capture slightly different regions
from the scene (see Fig. 1); these differences come
from the camera baselines as well as from the differ-
ences on the camera intrinsic parameters. Having in
mind these limitations a set of 10 images per each res-
olution (LR, MR, HR) is selected and registered with
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Table 1: Thermal camera specifications (*the HR images have been crop to 640×480).

Image Description Brand Camera FOV Focal Length Native Resolution

Low (LR) Axis Domo P1290 35.4 4mm 160×120

Mid (MR) Axis Q2901-E 35 9mm 320×240

High (HR) FC-632O FLIR 32 19mm 640×512*

Figure 4: Image registration results. (top) From left to
right: LR image; MR image; and image resulting from the
registration of MR image with the results of SRLR image.
(bottom) From left to right: MR image; HR image; and
image resulting from the registration of HR image with the
results of SRMR image.

Figure 5: Evaluation diagram between the obtained SR
from MR with registered HR (the same process is applied
to evaluate SR results from LR, in other words SRLR with
MR).

the corresponding SR result. In other words, from a
given scene the registration between (SRLR, MR) and
(SRMR, HR) is performed (Fig. 4 presents an illustra-
tion of this process). This registration process is per-
formed to evaluate SR results using pixel-wise met-
rics; actually, to avoid non-overlapped regions (see
Fig. 4), just a centered region containing 80% of the
image is considered (see illustration in Fig. 5).

The pixel-wise metrics mentioned above to eval-
uate the results are: i) Peak Signal-to-Noise Ratio
(PSNR), which is commonly used to measure the
reconstruction quality of lossy transformations; and

ii) Structural Similarity Index Metric (SSIM) (Wang
et al., 2004), which is based on the independent com-
parisons of luminance, contrast, and structure. Even
the domain of these images are thermal, they are
represented like grayscale images, so these metrics
can be also used. Image quality assessments (IQA),
focused on the perception of human viewers, are
avoided in the current work due to they are expen-
sive and time-consuming; furthermore, they are not
necessarily consistent in the case of thermal images.

In the current work the evaluations will be per-
formed just for ×2 scale. The average evaluation
value will be computed as follows:

R×2 =
1

N

N

∑
1

eval
(
GTN ,SR×2

N
)

(1)

where eval corresponds to PSNR or SSIM measures,
and N is the number of validation images (in the cur-
rent work 10 images have been considered). As men-
tioned above that eval is computed just on a region
of the image to avoid non-overlapped areas (see Fig.
4), which appear due to the bias of the cameras and
differences on the intrinsic camera parameters.

3.2 Proposed Architecture

This section presents details of the unsupervised
learning approach proposed for estimating SR im-
ages. As mentioned above, the current work tack-
les the SR problem by using images from different
cameras, which have been acquired at different reso-
lutions. The proposed approach is based on the usage
of a Cycle Generative Adversarial Network (Cycle-
GAN) (Zhu et al., 2017), which is able to map in-
formation from one domain (low-resolution image)
to another domain (high-resolution image). Figure 6
presents an illustration of a CycleGAN architecture
used in the current work. It consists of two gener-
ators (GL−H and GH−L) and two discriminators (DH
and DL). In the generators ResNet with 6 residual
blocks (ResNet-6), to avoid degradation of the opti-
mization during the training process, are considered.
Each residual block is (Conv -> InstaNorm -> Conv
-> InstaNorm -> Relu), with skip connections. Re-
garding the discriminators, a PatchGAN based archi-
tecture is considered. Each block in the discrimina-
tor is (Conv -> Conv -> InstaNorm -> Conv -> In-
staNorm -> Conv -> LeakyReLU), the shape of the
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Figure 6: Proposed CycleGAN architecture using 6 residual blocks ResNet; GL−H and GH−L represent generators from lower
to higher and from higher to lower resolution respectively. DH and DL represent the discriminator for each resolution.

output after last layer is (batch size, 30, 30, 1), each
30×30 of the output classifies a 70×70 portion of the
input images. The discriminator receives two inputs,
the target image (classified as a real image) and the
generated image (which should be discriminated as
real of fake image by the discriminator).

The proposed architecture uses a combination of
different loss functions: adversarial loss LAdversarial ,
cycle loss LCycle, identity loss LIdentity, and structural
similarity loss LSSIM , which are detailed next.

The adversarial loss is designed to minimize the
cross-entropy to improve the texture loss :

LAdversarial =−∑
i

logD(GL−H(IL), IH), (2)

where D is the discriminator, GL−H(IL) is the gen-
erated image, IL and IH are the low and high image
respectively.

The cycled loss (LCycled) is used to determinate
the consistency between input and cycled output; it is
defined as:

LCycled =
1

N ∑
i
||GH−L(GL−H(IL))− IL||, (3)

where GL−H and GH−L are the generators that go
from one domain to the other domain.

The identity loss (LIdentity) is used for maintain-
ing the consistency between input and output; it is de-
fined as:

LIdentity =
1

N ∑
i
||GL−H(IL)− IH ||, (4)

where G is the generated image and I is the input im-
age.

The structural similarity loss (LSSIM) for a pixel
P is defined as:

LSSIM =
1

NM

P

∑
p=1

1−SSIM(p), (5)

where SSIM(p) is the Structural Similarity Index (see
(Wang et al., 2004) for more details) centered in pixel
p of the patch (P).

The total loss function (Ltotal) used in this work
is the weighted sum of the individual loss function
terms:

Ltotal = λ1LAdversarial +λ2LCycled +λ3LIdentity

+λ4LSSIM,
(6)

where λi for i = 1, 2, 3, 4 are weights for each loss,
which have been empirically set.

4 EXPERIMENTAL RESULTS

This section presents the results of the proposed unsu-
pervised learning SR approach. Section 4.1 presents
information of the dataset acquired with the platform
presented in Section 3.1; then Section 4.2 depicts the
parameters used for training the CycleGAN archi-
tecture. Finally, Section 4.3 shows the quantitative
and qualitative results obtained with the proposed ap-
proach.

4.1 Dataset

By using the thermal cameras mounted in the panel
shown in Fig. 2 a set of 1021 images per camera was
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Figure 7: Examples of thermal images used for training. (top) LR images from Axis Domo P1290. (middle) MR images
from Axis Q2901-E. (bottom) HR images from FC-6320 FLIR.

generated. The images correspond to outdoor scenar-
ios containing different objects (e.g., buildings, cars,
people, vegetation); the images have been acquired at
different daytime, including morning, afternoon and
night. Figure 7 shows some examples of the type of
images contained in the acquired dataset. The dataset
is split up into 951 images for training and 50 for
testing; the remaining 20 images are used for vali-
dation. All images are saved in one channel in jpg
format without compression. The set of images for
validation has been registered; half of this set has been
used for registering MR images with the correspond-
ing SRLR and the other half for registering SR images
with the corresponding SRMR. As detailed in Section
3.1 this registration process is performed for evaluat-
ing results at a pixel-wise.

4.2 Training

The proposed CycleGAN model has been imple-
mented with Tensorflow 2.0 using Keras library. The
experiments were performed on a workstation with
NVIDIA Geforce GTX and 128GB of RAM. The
aforementioned set of training images (951 images)
has been used without data augmentation; a set of
50 images has been used for testing. The given im-
ages have been normalized in a (-1,1) range. The
network was trained for 50 epochs, from lower to
higher resolution, LR images were firstly up-sampled
by bicubic interpolation, due to the fact that input
and output images in CycleGAN have to be in the
same resolution. No dropout techniques were used
since the model does not overfit within 50 epochs.
The CycleGAN architecture has been trained using
Stochastic AdamOptimizer since it prevents overfit-

ting and leads to convergence faster. The following
hyper-parameters were used: learning rate 0.0002 for
both the generator and the discriminator networks;
epsilon=1e-05; exponential decay rate for the 1st mo-
ment momentum 0.5 for discriminator and 0.4 for
the generator. The CycleGAN architecture has been
trained twice, one for SRLR and once for SRMR

4.3 Results

Quantitative results obtained with the proposed Cy-
cleGAN architecture, for both validation, from LR to
MR and from MR to HR, are shown in Table 2 and Ta-
ble 3 respectively, together with the results obtained
with (Rivadeneira et al., 2019) and with the bicubic
interpolation, which is used as a baseline. As can be
appreciated, the proposed architecture achieves a bet-
ter performance than both, the previous publication
and the bicubic interpolation.

Qualitative comparisons, for both evaluations, are
depicted in Fig. 8 and Fig. 9. The results have
shown that using this architecture to go from a lower
resolution to a higher resolution is available, even
though the network is trained with images from dif-
ferent cameras where there is not a perfect registra-
tion.

Table 2: Results on LR set in a ×2 scale factor, compared
with its MR registered validation set.

Method PSNR SSIM

Bicubic Interpolation 16.46 0.6695

(Rivadeneira et al., 2019) 17.01 0.6704

Current work 21.50 0.7218
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Figure 8: SR results on real-world LR images with a ×2 scale factor—these illustrations correspond to the 80% centered
area cropped from the images. (top− row) Bicubic interpolation image, (middle− row) Super-resolution results (SRLR),
(bottom− row) Ground truth MR image.

Figure 9: SR results on real-world MR images with a ×2 scale factor—these illustrations correspond to the 80% centered
area cropped from the images. (top− row) Bicubic interpolation image, (middle− row) Super-resolution results (SRMR),
(bottom− row) Ground truth HR image.

Table 3: Results on MR set in a ×2 scale factor, compared
with its HR registered validation set.

Method PSNR SSIM

Bicubic Interpolation 20.17 0.7553

(Rivadeneira et al., 2019) 20.24 0.7492

Current work 22.42 0.7989

5 CONCLUSIONS

This paper presents a novel CycleGAN based ap-
proach for thermal image super-resolution. ResNets
with 6 residual blocks are used as the generators,
while a PatchGAN based architectures are used as dis-
criminators. The CycleGAN architecture is trained
in an unsupervised way using non-paired sets of im-

ages. The network is trained to perform SR at a ×2
scale. It has been trained in two scenarios, to gener-
ate mid-resolution images from low-resolution and to
generate high-resolution from mid-resolution. Com-
parisons with a previous approach and with the bicu-
bic interpolation, which is used as a baseline, show
the validity of the proposed approach. In order to train
the proposed architecture a novel dataset containing
images from three different thermal cameras, at dif-
ferent resolutions, has been generated. The proposed
CycleGAN based approach allows to tackle the SR
problem in a more challenging and realistic scenario
than classical super-resolution approaches where the
given image is down-sampled to train the network in a
supervised way. Future work will be focused on eval-
uating other loss functions trying to improve the ob-
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tained results as well as testing different architectures
in the Generator and Discriminator.
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