toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Javier Vazquez edit  openurl
  Title Colour Constancy in Natural Through Colour Naming and Sensor Sharpening Type Book Whole
  Year 2011 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Colour is derived from three physical properties: incident light, object reflectance and sensor sensitivities. Incident light varies under natural conditions; hence, recovering scene illuminant is an important issue in computational colour. One way to deal with this problem under calibrated conditions is by following three steps, 1) building a narrow-band sensor basis to accomplish the diagonal model, 2) building a feasible set of illuminants, and 3) defining criteria to select the best illuminant. In this work we focus on colour constancy for natural images by introducing perceptual criteria in the first and third stages.
To deal with the illuminant selection step, we hypothesise that basic colour categories can be used as anchor categories to recover the best illuminant. These colour names are related to the way that the human visual system has evolved to encode relevant natural colour statistics. Therefore the recovered image provides the best representation of the scene labelled with the basic colour terms. We demonstrate with several experiments how this selection criterion achieves current state-of-art results in computational colour constancy. In addition to this result, we psychophysically prove that usual angular error used in colour constancy does not correlate with human preferences, and we propose a new perceptual colour constancy evaluation.
The implementation of this selection criterion strongly relies on the use of a diagonal
model for illuminant change. Consequently, the second contribution focuses on building an appropriate narrow-band sensor basis to represent natural images. We propose to use the spectral sharpening technique to compute a unique narrow-band basis optimised to represent a large set of natural reflectances under natural illuminants and given in the basis of human cones. The proposed sensors allow predicting unique hues and the World colour Survey data independently of the illuminant by using a compact singularity function. Additionally, we studied different families of sharp sensors to minimise different perceptual measures. This study brought us to extend the spherical sampling procedure from 3D to 6D.
Several research lines still remain open. One natural extension would be to measure the
effects of using the computed sharp sensors on the category hypothesis, while another might be to insert spatial contextual information to improve category hypothesis. Finally, much work still needs to be done to explore how individual sensors can be adjusted to the colours in a scene.
 
  Address (up)  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Maria Vanrell;Graham D. Finlayson  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ Vaz2011a Serial 1785  
Permanent link to this record
 

 
Author Jaime Moreno edit  url
isbn  openurl
  Title Perceptual Criteria on Image Compresions Type Book Whole
  Year 2011 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Nowadays, digital images are used in many areas in everyday life, but they tend to be big. This increases amount of information leads us to the problem of image data storage. For example, it is common to have a representation a color pixel as a 24-bit number, where the channels red, green, and blue employ 8 bits each. In consequence, this kind of color pixel can specify one of 224 ¼ 16:78 million colors. Therefore, an image at a resolution of 512 £ 512 that allocates 24 bits per pixel, occupies 786,432 bytes. That is why image compression is important. An important feature of image compression is that it can be lossy or lossless. A compressed image is acceptable provided these losses of image information are not perceived by the eye. It is possible to assume that a portion of this information is redundant. Lossless Image Compression is defined as to mathematically decode the same image which was encoded. In Lossy Image Compression needs to identify two features inside the image: the redundancy and the irrelevancy of information. Thus, lossy compression modifies the image data in such a way when they are encoded and decoded, the recovered image is similar enough to the original one. How similar is the recovered image in comparison to the original image is defined prior to the compression process, and it depends on the implementation to be performed. In lossy compression, current image compression schemes remove information considered irrelevant by using mathematical criteria. One of the problems of these schemes is that although the numerical quality of the compressed image is low, it shows a high visual image quality, e.g. it does not show a lot of visible artifacts. It is because these mathematical criteria, used to remove information, do not take into account if the viewed information is perceived by the Human Visual System. Therefore, the aim of an image compression scheme designed to obtain images that do not show artifacts although their numerical quality can be low, is to eliminate the information that is not visible by the Human Visual System. Hence, this Ph.D. thesis proposes to exploit the visual redundancy existing in an image by reducing those features that can be unperceivable for the Human Visual System. First, we define an image quality assessment, which is highly correlated with the psychophysical experiments performed by human observers. The proposed CwPSNR metrics weights the well-known PSNR by using a particular perceptual low level model of the Human Visual System, e.g. the Chromatic Induction Wavelet Model (CIWaM). Second, we propose an image compression algorithm (called Hi-SET), which exploits the high correlation and self-similarity of pixels in a given area or neighborhood by means of a fractal function. Hi-SET possesses the main features that modern image compressors have, that is, it is an embedded coder, which allows a progressive transmission. Third, we propose a perceptual quantizer (½SQ), which is a modification of the uniform scalar quantizer. The ½SQ is applied to a pixel set in a certain Wavelet sub-band, that is, a global quantization. Unlike this, the proposed modification allows to perform a local pixel-by-pixel forward and inverse quantization, introducing into this process a perceptual distortion which depends on the surround spatial information of the pixel. Combining ½SQ method with the Hi-SET image compressor, we define a perceptual image compressor, called ©SET. Finally, a coding method for Region of Interest areas is presented, ½GBbBShift, which perceptually weights pixels into these areas and maintains only the more important perceivable features in the rest of the image. Results presented in this report show that CwPSNR is the best-ranked image quality method when it is applied to the most common image compression distortions such as JPEG and JPEG2000. CwPSNR shows the best correlation with the judgement of human observers, which is based on the results of psychophysical experiments obtained for relevant image quality databases such as TID2008, LIVE, CSIQ and IVC. Furthermore, Hi-SET coder obtains better results both for compression ratios and perceptual image quality than the JPEG2000 coder and other coders that use a Hilbert Fractal for image compression. Hence, when the proposed perceptual quantization is introduced to Hi-SET coder, our compressor improves its numerical and perceptual e±ciency. When ½GBbBShift method applied to Hi-SET is compared against MaxShift method applied to the JPEG2000 standard and Hi-SET, the images coded by our ROI method get the best results when the overall image quality is estimated. Both the proposed perceptual quantization and the ½GBbBShift method are generalized algorithms that can be applied to other Wavelet based image compression algorithms such as JPEG2000, SPIHT or SPECK.  
  Address (up)  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Xavier Otazu  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-938351-3-2 Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ Mor2011 Serial 1786  
Permanent link to this record
 

 
Author Ferran Diego edit  openurl
  Title Probabilistic Alignment of Video Sequences Recorded by Moving Cameras Type Book Whole
  Year 2011 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Video alignment consists of integrating multiple video sequences recorded independently into a single video sequence. This means to register both in time (synchronize
frames) and space (image registration) so that the two videos sequences can be fused
or compared pixel–wise. In spite of being relatively unknown, many applications today may benefit from the availability of robust and efficient video alignment methods.
For instance, video surveillance requires to integrate video sequences that are recorded
of the same scene at different times in order to detect changes. The problem of aligning videos has been addressed before, but in the relatively simple cases of fixed or rigidly attached cameras and simultaneous acquisition. In addition, most works rely
on restrictive assumptions which reduce its difficulty such as linear time correspondence or the knowledge of the complete trajectories of corresponding scene points on the images; to some extent, these assumptions limit the practical applicability of the solutions developed until now. In this thesis, we focus on the challenging problem of aligning sequences recorded at different times from independent moving cameras following similar but not coincident trajectories. More precisely, this thesis covers four studies that advance the state-of-the-art in video alignment. First, we focus on analyzing and developing a probabilistic framework for video alignment, that is, a principled way to integrate multiple observations and prior information. In this way, two different approaches are presented to exploit the combination of several purely visual features (image–intensities, visual words and dense motion field descriptor), and
global positioning system (GPS) information. Second, we focus on reformulating the
problem into a single alignment framework since previous works on video alignment
adopt a divide–and–conquer strategy, i.e., first solve the synchronization, and then
register corresponding frames. This also generalizes the ’classic’ case of fixed geometric transform and linear time mapping. Third, we focus on exploiting directly the
time domain of the video sequences in order to avoid exhaustive cross–frame search.
This provides relevant information used for learning the temporal mapping between
pairs of video sequences. Finally, we focus on adapting these methods to the on–line
setting for road detection and vehicle geolocation. The qualitative and quantitative
results presented in this thesis on a variety of real–world pairs of video sequences show that the proposed method is: robust to varying imaging conditions, different image
content (e.g., incoming and outgoing vehicles), variations on camera velocity, and
different scenarios (indoor and outdoor) going beyond the state–of–the–art. Moreover, the on–line video alignment has been successfully applied for road detection and
vehicle geolocation achieving promising results.
 
  Address (up)  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Joan Serrat  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Die2011 Serial 1787  
Permanent link to this record
 

 
Author Sergio Escalera; Xavier Baro; Oriol Pujol; Jordi Vitria; Petia Radeva edit  doi
isbn  openurl
  Title Traffic-Sign Recognition Systems Type Book Whole
  Year 2011 Publication SpringerBriefs in Computer Science Abbreviated Journal  
  Volume Issue Pages 5-13  
  Keywords  
  Abstract  
  Address (up)  
  Corporate Author Thesis  
  Publisher Springer London Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4471-2244-9 Medium  
  Area Expedition Conference  
  Notes MILAB; OR;HuPBA;MV Approved no  
  Call Number Admin @ si @ EBP2011 Serial 1801  
Permanent link to this record
 

 
Author Eduard Vazquez edit  openurl
  Title Unsupervised image segmentation based on material reflectance description and saliency Type Book Whole
  Year 2011 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Image segmentations aims to partition an image into a set of non-overlapped regions, called segments. Despite the simplicity of the definition, image segmentation raises as a very complex problem in all its stages. The definition of segment is still unclear. When asking to a human to perform a segmentation, this person segments at different levels of abstraction. Some segments might be a single, well-defined texture whereas some others correspond with an object in the scene which might including multiple textures and colors. For this reason, segmentation is divided in bottom-up segmentation and top-down segmentation. Bottom up-segmentation is problem independent, that is, focused on general properties of the images such as textures or illumination. Top-down segmentation is a problem-dependent approach which looks for specific entities in the scene, such as known objects. This work is focused on bottom-up segmentation. Beginning from the analysis of the lacks of current methods, we propose an approach called RAD. Our approach overcomes the main shortcomings of those methods which use the physics of the light to perform the segmentation. RAD is a topological approach which describes a single-material reflectance. Afterwards, we cope with one of the main problems in image segmentation: non supervised adaptability to image content. To yield a non-supervised method, we use a model of saliency yet presented in this thesis. It computes the saliency of the chromatic transitions of an image by means of a statistical analysis of the images derivatives. This method of saliency is used to build our final approach of segmentation: spRAD. This method is a non-supervised segmentation approach. Our saliency approach has been validated with a psychophysical experiment as well as computationally, overcoming a state-of-the-art saliency method. spRAD also outperforms state-of-the-art segmentation techniques as results obtained with a widely-used segmentation dataset show  
  Address (up)  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor Ramon Baldrich  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ Vaz2011b Serial 1835  
Permanent link to this record
 

 
Author Santiago Segui edit  openurl
  Title Contributions to the Diagnosis of Intestinal Motility by Automatic Image Analysis Type Book Whole
  Year 2011 Publication PhD Thesis, Universitat de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In the early twenty first century Given Imaging Ltd. presented wireless capsule endoscopy (WCE) as a new technological breakthrough that allowed the visualization of
the intestine by using a small, swallowed camera. This small size device was received
with a high enthusiasm within the medical community, and until now, it is still one
of the medical devices with the highest use growth rate. WCE can be used as a novel
diagnostic tool that presents several clinical advantages, since it is non-invasive and
at the same time it provides, for the first time, a full picture of the small bowel morphology, contents and dynamics. Since its appearance, the WCE has been used to
detect several intestinal dysfunctions such as: polyps, ulcers and bleeding. However,
the visual analysis of WCE videos presents an important drawback: the long time
required by the physicians for proper video visualization. In this sense and regarding
to this limitation, the development of computer aided systems is required for the extensive use of WCE in the medical community.
The work presented in this thesis is a set of contributions for the automatic image
analysis and computer-aided diagnosis of intestinal motility disorders using WCE.
Until now, the diagnosis of small bowel motility dysfunctions was basically performed
by invasive techniques such as the manometry test, which can only be conducted at
some referral centers around the world owing to the complexity of the procedure and
the medial expertise required in the interpretation of the results.
Our contributions are divided in three main blocks:
1. Image analysis by computer vision techniques to detect events in the endoluminal WCE scene. Several methods have been proposed to detect visual events
such as: intestinal contractions, intestinal content, tunnel and wrinkles;
2. Machine learning techniques for the analysis and the manipulation of the data
from WCE. These methods have been proposed in order to overcome the problems that the analysis of WCE presents such as: video acquisition cost, unlabeled data and large number of data;
3. Two different systems for the computer-aided diagnosis of intestinal motility
disorders using WCE. The first system presents a fully automatic method that
aids at discriminating healthy subjects from patients with severe intestinal motor disorders like pseudo-obstruction or food intolerance. The second system presents another automatic method that models healthy subjects and discriminate them from mild intestinal motility patients.
 
  Address (up)  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Jordi Vitria  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ Seg2011 Serial 1836  
Permanent link to this record
 

 
Author Pierluigi Casale edit  openurl
  Title Approximate Ensemble Methods for Physical Activity Recognition Applications Type Book Whole
  Year 2011 Publication PhD Thesis, Universitat de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The main interest of this thesis focuses on computational methodologies able to
reduce the degree of complexity of learning algorithms and its application to physical
activity recognition.
Random Projections will be used to reduce the computational complexity in Multiple Classifier Systems. A new boosting algorithm and a new one-class classification
methodology have been developed. In both cases, random projections are used for
reducing the dimensionality of the problem and for generating diversity, exploiting in
this way the benefits that ensembles of classifiers provide in terms of performances
and stability. Moreover, the new one-class classification methodology, based on an ensemble strategy able to approximate a multidimensional convex-hull, has been proved
to over-perform state-of-the-art one-class classification methodologies.
The practical focus of the thesis is towards Physical Activity Recognition. A new
hardware platform for wearable computing application has been developed and used
for collecting data of activities of daily living allowing to study the optimal features
set able to successful classify activities.
Based on the classification methodologies developed and the study conducted on
physical activity classification, a machine learning architecture capable to provide a
continuous authentication mechanism for mobile-devices users has been worked out,
as last part of the thesis. The system, based on a personalized classifier, states on
the analysis of the characteristic gait patterns typical of each individual ensuring an
unobtrusive and continuous authentication mechanism
 
  Address (up)  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Oriol Pujol;Petia Radeva  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ Cas2011 Serial 1837  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan edit  openurl
  Title Coloring bag-of-words based image representations Type Book Whole
  Year 2011 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Put succinctly, the bag-of-words based image representation is the most successful approach for object and scene recognition. Within the bag-of-words framework the optimal fusion of multiple cues, such as shape, texture and color, still remains an active research domain. There exist two main approaches to combine color and shape information within the bag-of-words framework. The first approach called, early fusion, fuses color and shape at the feature level as a result of which a joint colorshape vocabulary is produced. The second approach, called late fusion, concatenates histogram representation of both color and shape, obtained independently. In the first part of this thesis, we analyze the theoretical implications of both early and late feature fusion. We demonstrate that both these approaches are suboptimal for a subset of object categories. Consequently, we propose a novel method for recognizing object categories when using multiple cues by separately processing the shape and color cues and combining them by modulating the shape features by category specific color attention. Color is used to compute bottom-up and top-down attention maps. Subsequently, the color attention maps are used to modulate the weights of the shape features. Shape features are given more weight in regions with higher attention and vice versa. The approach is tested on several benchmark object recognition data sets and the results clearly demonstrate the effectiveness of our proposed method. In the second part of the thesis, we investigate the problem of obtaining compact spatial pyramid representations for object and scene recognition. Spatial pyramids have been successfully applied to incorporate spatial information into bag-of-words based image representation. However, a major drawback of spatial pyramids is that it leads to high dimensional image representations. We present a novel framework for obtaining compact pyramid representation. The approach reduces the size of a high dimensional pyramid representation upto an order of magnitude without any significant reduction in accuracy. Moreover, we also investigate the optimal combination of multiple features such as color and shape within the context of our compact pyramid representation. Finally, we describe a novel technique to build discriminative visual words from multiple cues learned independently from training images. To this end, we use an information theoretic vocabulary compression technique to find discriminative combinations of visual cues and the resulting visual vocabulary is compact, has the cue binding property, and supports individual weighting of cues in the final image representation. The approach is tested on standard object recognition data sets. The results obtained clearly demonstrate the effectiveness of our approach.  
  Address (up)  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor Joost Van de Weijer;Maria Vanrell  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ Kha2011 Serial 1838  
Permanent link to this record
 

 
Author Jorge Bernal; David Vazquez (eds) edit   pdf
isbn  openurl
  Title Computer vision Trends and Challenges Type Book Whole
  Year 2013 Publication Computer vision Trends and Challenges Abbreviated Journal  
  Volume Issue Pages  
  Keywords CVCRD; Computer Vision  
  Abstract This book contains the papers presented at the Eighth CVC Workshop on Computer Vision Trends and Challenges (CVCR&D'2013). The workshop was held at the Computer Vision Center (Universitat Autònoma de Barcelona), the October 25th, 2013. The CVC workshops provide an excellent opportunity for young researchers and project engineers to share new ideas and knowledge about the progress of their work, and also, to discuss about challenges and future perspectives. In addition, the workshop is the welcome event for new people that recently have joined the institute.

The program of CVCR&D is organized in a single-track single-day workshop. It comprises several sessions dedicated to specific topics. For each session, a doctor working on the topic introduces the general research lines. The PhD students expose their specific research. A poster session will be held for open questions. Session topics cover the current research lines and development projects of the CVC: Medical Imaging, Medical Imaging, Color & Texture Analysis, Object Recognition, Image Sequence Evaluation, Advanced Driver Assistance Systems, Machine Vision, Document Analysis, Pattern Recognition and Applications. We want to thank all paper authors and Program Committee members. Their contribution shows that the CVC has a dynamic, active, and promising scientific community.

We hope you all enjoy this Eighth workshop and we are looking forward to meeting you and new people next year in the Ninth CVCR&D.
 
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Jorge Bernal; David Vazquez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-940902-2-6 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number ADAS @ adas @ BeV2013 Serial 2339  
Permanent link to this record
 

 
Author David Geronimo; Antonio Lopez edit  doi
isbn  openurl
  Title Vision-based Pedestrian Protection Systems for Intelligent Vehicles Type Book Whole
  Year 2014 Publication SpringerBriefs in Computer Science Abbreviated Journal  
  Volume Issue Pages 1-114  
  Keywords Computer Vision; Driver Assistance Systems; Intelligent Vehicles; Pedestrian Detection; Vulnerable Road Users  
  Abstract Pedestrian Protection Systems (PPSs) are on-board systems aimed at detecting and tracking people in the surroundings of a vehicle in order to avoid potentially dangerous situations. These systems, together with other Advanced Driver Assistance Systems (ADAS) such as lane departure warning or adaptive cruise control, are one of the most promising ways to improve traffic safety. By the use of computer vision, cameras working either in the visible or infra-red spectra have been demonstrated as a reliable sensor to perform this task. Nevertheless, the variability of human’s appearance, not only in terms of clothing and sizes but also as a result of their dynamic shape, makes pedestrians one of the most complex classes even for computer vision. Moreover, the unstructured changing and unpredictable environment in which such on-board systems must work makes detection a difficult task to be carried out with the demanded robustness. In this brief, the state of the art in PPSs is introduced through the review of the most relevant papers of the last decade. A common computational architecture is presented as a framework to organize each method according to its main contribution. More than 300 papers are referenced, most of them addressing pedestrian detection and others corresponding to the descriptors (features), pedestrian models, and learning machines used. In addition, an overview of topics such as real-time aspects, systems benchmarking and future challenges of this research area are presented.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Springer Briefs in Computer Vision Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4614-7986-4 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number GeL2014 Serial 2325  
Permanent link to this record
 

 
Author Theo Gevers; Arjan Gijsenij; Joost Van de Weijer; J.M. Geusebroek edit  isbn
openurl 
  Title Color in Computer Vision: Fundamentals and Applications Type Book Whole
  Year 2012 Publication Color in Computer Vision: Fundamentals and Applications Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address (up)  
  Corporate Author Thesis  
  Publisher The Wiley-IS&T Series in Imaging Science and Technology Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-470-89084-4 Medium  
  Area Expedition Conference  
  Notes ALTRES;ISE Approved no  
  Call Number Admin @ si @ GGG2012a Serial 2068  
Permanent link to this record
 

 
Author Mario Hernandez; Joao Sanchez; Jordi Vitria edit  doi
openurl 
  Title Selected papers from Iberian Conference on Pattern Recognition and Image Analysis Type Book Whole
  Year 2012 Publication Pattern Recognition Abbreviated Journal  
  Volume 45 Issue 9 Pages 3047-3582  
  Keywords  
  Abstract  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes OR;MV Approved no  
  Call Number Admin @ si @ HSV2012 Serial 2069  
Permanent link to this record
 

 
Author Francesco Ciompi edit  openurl
  Title Multi-Class Learning for Vessel Characterization in Intravascular Ultrasound Type Book Whole
  Year 2012 Publication PhD Thesis, Universitat de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In this thesis we tackle the problem of automatic characterization of human coronary vessel in Intravascular Ultrasound (IVUS) image modality. The basis for the whole characterization process is machine learning applied to multi-class problems. In all the presented approaches, the Error-Correcting Output Codes (ECOC) framework is used as central element for the design of multi-class classifiers.
Two main topics are tackled in this thesis. First, the automatic detection of the vessel borders is presented. For this purpose, a novel context-aware classifier for multi-class classification of the vessel morphology is presented, namely ECOC-DRF. Based on ECOC-DRF, the lumen border and the media-adventitia border in IVUS are robustly detected by means of a novel holistic approach, achieving an error comparable with inter-observer variability and with state of the art methods.
The two vessel borders define the atheroma area of the vessel. In this area, tissue characterization is required. For this purpose, we present a framework for automatic plaque characterization by processing both texture in IVUS images and spectral information in raw Radio Frequency data. Furthermore, a novel method for fusing in-vivo and in-vitro IVUS data for plaque characterization is presented, namely pSFFS. The method demonstrates to effectively fuse data generating a classifier that improves the tissue characterization in both in-vitro and in-vivo datasets.
A novel method for automatic video summarization in IVUS sequences is also presented. The method aims to detect the key frames of the sequence, i.e., the frames representative of morphological changes. This novel method represents the basis for video summarization in IVUS as well as the markers for the partition of the vessel into morphological and clinically interesting events.
Finally, multi-class learning based on ECOC is applied to lung tissue characterization in Computed Tomography. The novel proposed approach, based on supervised and unsupervised learning, achieves accurate tissue classification on a large and heterogeneous dataset.
 
  Address (up)  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Petia Radeva;Oriol Pujol  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ Cio2012 Serial 2146  
Permanent link to this record
 

 
Author Susana Alvarez edit  openurl
  Title Revisión de la teoría de los Textons Enfoque computacional en color Type Book Whole
  Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract El color y la textura son dos estímulos visuales importantes para la interpretación de las imágenes. La definición de descriptores computacionales que combinan estas dos características es aún un problema abierto. La dificultad se deriva esencialmente de la propia naturaleza de ambas, mientras que la textura es una propiedad de una región, el color es una propiedad de un punto.

Hasta ahora se han utilizado tres los tipos de aproximaciones para la combinación, (a) se describe la textura directamente en cada uno de los canales color, (b) se describen textura y color por separado y se combinan al final, y (c) la combinación se realiza con técnicas de aprendizaje automático. Considerando que este problema se resuelve en el sistema visual humano en niveles muy tempranos, en esta tesis se propone estudiar el problema a partir de la implementación directa de una teoría perceptual, la teoría de los textons, y explorar así su extensión a color.

Puesto que la teoría de los textons se basa en la descripción de la textura a partir de las densidades de los atributos locales, esto se adapta perfectamente al marco de trabajo de los descriptores holísticos (bag-of-words). Se han estudiado diversos descriptores basados en diferentes espacios de textons, y diferentes representaciones de las imágenes. Asimismo se ha estudiado la viabilidad de estos descriptores en una representación conceptual de nivel intermedio.

Los descriptores propuestos han demostrado ser muy eficientes en aplicaciones de recuperación y clasificación de imágenes, presentando ventajas en la generación de vocabularios. Los vocabularios se obtienen cuantificando directamente espacios de baja dimensión y la perceptualidad de estos espacios permite asociar semántica de bajo nivel a las palabras visuales. El estudio de los resultados permite concluir que si bien la aproximación holística es muy eficiente, la introducción de co-ocurrencia espacial de las propiedades de forma y color de los blobs de la imagen es un elemento clave para su combinación, hecho que no contradice las evidencias en percepción
 
  Address (up)  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Maria Vanrell;Xavier Otazu  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Alv2012b Serial 2216  
Permanent link to this record
 

 
Author Angel Sappa; Jordi Vitria edit  doi
isbn  openurl
  Title Multimodal Interaction in Image and Video Applications Type Book Whole
  Year 2013 Publication Multimodal Interaction in Image and Video Applications Abbreviated Journal  
  Volume 48 Issue Pages  
  Keywords  
  Abstract Book Series Intelligent Systems Reference Library  
  Address (up)  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1868-4394 ISBN 978-3-642-35931-6 Medium  
  Area Expedition Conference  
  Notes ADAS; OR;MV Approved no  
  Call Number Admin @ si @ SaV2013 Serial 2199  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: