toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Francesco Ciompi edit  openurl
  Title Multi-Class Learning for Vessel Characterization in Intravascular Ultrasound Type Book Whole
  Year 2012 Publication PhD Thesis, Universitat de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In this thesis we tackle the problem of automatic characterization of human coronary vessel in Intravascular Ultrasound (IVUS) image modality. The basis for the whole characterization process is machine learning applied to multi-class problems. In all the presented approaches, the Error-Correcting Output Codes (ECOC) framework is used as central element for the design of multi-class classifiers.
Two main topics are tackled in this thesis. First, the automatic detection of the vessel borders is presented. For this purpose, a novel context-aware classifier for multi-class classification of the vessel morphology is presented, namely ECOC-DRF. Based on ECOC-DRF, the lumen border and the media-adventitia border in IVUS are robustly detected by means of a novel holistic approach, achieving an error comparable with inter-observer variability and with state of the art methods.
The two vessel borders define the atheroma area of the vessel. In this area, tissue characterization is required. For this purpose, we present a framework for automatic plaque characterization by processing both texture in IVUS images and spectral information in raw Radio Frequency data. Furthermore, a novel method for fusing in-vivo and in-vitro IVUS data for plaque characterization is presented, namely pSFFS. The method demonstrates to effectively fuse data generating a classifier that improves the tissue characterization in both in-vitro and in-vivo datasets.
A novel method for automatic video summarization in IVUS sequences is also presented. The method aims to detect the key frames of the sequence, i.e., the frames representative of morphological changes. This novel method represents the basis for video summarization in IVUS as well as the markers for the partition of the vessel into morphological and clinically interesting events.
Finally, multi-class learning based on ECOC is applied to lung tissue characterization in Computed Tomography. The novel proposed approach, based on supervised and unsupervised learning, achieves accurate tissue classification on a large and heterogeneous dataset.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Petia Radeva;Oriol Pujol  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ Cio2012 Serial 2146  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: