Xim Cerda-Company, Xavier Otazu, Nilai Sallent, & C. Alejandro Parraga. (2018). The effect of luminance differences on color assimilation. JV - Journal of Vision, 18(11), 10.
Abstract: The color appearance of a surface depends on the color of its surroundings (inducers). When the perceived color shifts towards that of the surroundings, the effect is called “color assimilation” and when it shifts away from the surroundings it is called “color contrast.” There is also evidence that the phenomenon depends on the spatial configuration of the inducer, e.g., uniform surrounds tend to induce color contrast and striped surrounds tend to induce color assimilation. However, previous work found that striped surrounds under certain conditions do not induce color assimilation but induce color contrast (or do not induce anything at all), suggesting that luminance differences and high spatial frequencies could be key factors in color assimilation. Here we present a new psychophysical study of color assimilation where we assessed the contribution of luminance differences (between the target and its surround) present in striped stimuli. Our results show that luminance differences are key factors in color assimilation for stimuli varying along the s axis of MacLeod-Boynton color space, but not for stimuli varying along the l axis. This asymmetry suggests that koniocellular neural mechanisms responsible for color assimilation only contribute when there is a luminance difference, supporting the idea that mutual-inhibition has a major role in color induction.
|
|
C. Alejandro Parraga, Ramon Baldrich, & Maria Vanrell. (2010). Accurate Mapping of Natural Scenes Radiance to Cone Activation Space: A New Image Dataset. In 5th European Conference on Colour in Graphics, Imaging and Vision and 12th International Symposium on Multispectral Colour Science (50–57).
Abstract: The characterization of trichromatic cameras is usually done in terms of a device-independent color space, such as the CIE 1931 XYZ space. This is indeed convenient since it allows the testing of results against colorimetric measures. We have characterized our camera to represent human cone activation by mapping the camera sensor's (RGB) responses to human (LMS) through a polynomial transformation, which can be “customized” according to the types of scenes we want to represent. Here we present a method to test the accuracy of the camera measures and a study on how the choice of training reflectances for the polynomial may alter the results.
|
|
C. Alejandro Parraga, Olivier Penacchio, & Maria Vanrell. (2011). Retinal Filtering Matches Natural Image Statistics at Low Luminance Levels. PER - Perception, 40, 96.
Abstract: The assumption that the retina’s main objective is to provide a minimum entropy representation to higher visual areas (ie efficient coding principle) allows to predict retinal filtering in space–time and colour (Atick, 1992 Network 3 213–251). This is achieved by considering the power spectra of natural images (which is proportional to 1/f2) and the suppression of retinal and image noise. However, most studies consider images within a limited range of lighting conditions (eg near noon) whereas the visual system’s spatial filtering depends on light intensity and the spatiochromatic properties of natural scenes depend of the time of the day. Here, we explore whether the dependence of visual spatial filtering on luminance match the changes in power spectrum of natural scenes at different times of the day. Using human cone-activation based naturalistic stimuli (from the Barcelona Calibrated Images Database), we show that for a range of luminance levels, the shape of the retinal CSF reflects the slope of the power spectrum at low spatial frequencies. Accordingly, the retina implements the filtering which best decorrelates the input signal at every luminance level. This result is in line with the body of work that places efficient coding as a guiding neural principle.
|
|
Alicia Fornes, Josep Llados, Gemma Sanchez, Xavier Otazu, & Horst Bunke. (2010). A Combination of Features for Symbol-Independent Writer Identification in Old Music Scores. IJDAR - International Journal on Document Analysis and Recognition, 13(4), 243–259.
Abstract: The aim of writer identification is determining the writer of a piece of handwriting from a set of writers. In this paper, we present an architecture for writer identification in old handwritten music scores. Even though an important amount of music compositions contain handwritten text, the aim of our work is to use only music notation to determine the author. The main contribution is therefore the use of features extracted from graphical alphabets. Our proposal consists in combining the identification results of two different approaches, based on line and textural features. The steps of the ensemble architecture are the following. First of all, the music sheet is preprocessed for removing the staff lines. Then, music lines and texture images are generated for computing line features and textural features. Finally, the classification results are combined for identifying the writer. The proposed method has been tested on a database of old music scores from the seventeenth to nineteenth centuries, achieving a recognition rate of about 92% with 20 writers.
|
|
Jaime Moreno, Xavier Otazu, & Maria Vanrell. (2010). Local Perceptual Weighting in JPEG2000 for Color Images. In 5th European Conference on Colour in Graphics, Imaging and Vision and 12th International Symposium on Multispectral Colour Science (255–260).
Abstract: The aim of this work is to explain how to apply perceptual concepts to define a perceptual pre-quantizer and to improve JPEG2000 compressor. The approach consists in quantizing wavelet transform coefficients using some of the human visual system behavior properties. Noise is fatal to image compression performance, because it can be both annoying for the observer and consumes excessive bandwidth when the imagery is transmitted. Perceptual pre-quantization reduces unperceivable details and thus improve both visual impression and transmission properties. The comparison between JPEG2000 without and with perceptual pre-quantization shows that the latter is not favorable in PSNR, but the recovered image is more compressed at the same or even better visual quality measured with a weighted PSNR. Perceptual criteria were taken from the CIWaM (Chromatic Induction Wavelet Model).
|
|
Jaime Moreno, Xavier Otazu, & Maria Vanrell. (2010). Contribution of CIWaM in JPEG2000 Quantization for Color Images. In Proceedings of The CREATE 2010 Conference (132–136).
Abstract: The aim of this work is to explain how to apply perceptual concepts to define a perceptual pre-quantizer and to improve JPEG2000 compressor. The approach consists in quantizing wavelet transform coefficients using some of the human visual system behavior properties. Noise is fatal to image compression performance, because it can be both annoying for the observer and consumes excessive bandwidth when the imagery is transmitted. Perceptual pre-quantization reduces unperceivable details and thus improve both visual impression and transmission properties. The comparison between JPEG2000 without and with perceptual pre-quantization shows that the latter is not favorable in PSNR, but the recovered image is more compressed at the same or even better visual quality measured with a weighted PSNR. Perceptual criteria were taken from the CIWaM(ChromaticInductionWaveletModel).
|
|
Susana Alvarez, & Maria Vanrell. (2012). Texton theory revisited: a bag-of-words approach to combine textons. PR - Pattern Recognition, 45(12), 4312–4325.
Abstract: The aim of this paper is to revisit an old theory of texture perception and
update its computational implementation by extending it to colour. With this in mind we try to capture the optimality of perceptual systems. This is achieved in the proposed approach by sharing well-known early stages of the visual processes and extracting low-dimensional features that perfectly encode adequate properties for a large variety of textures without needing further learning stages. We propose several descriptors in a bag-of-words framework that are derived from different quantisation models on to the feature spaces. Our perceptual features are directly given by the shape and colour attributes of image blobs, which are the textons. In this way we avoid learning visual words and directly build the vocabularies on these lowdimensionaltexton spaces. Main differences between proposed descriptors rely on how co-occurrence of blob attributes is represented in the vocabularies. Our approach overcomes current state-of-art in colour texture description which is proved in several experiments on large texture datasets.
|
|
Fahad Shahbaz Khan, Joost Van de Weijer, Sadiq Ali, & Michael Felsberg. (2013). Evaluating the impact of color on texture recognition. In 15th International Conference on Computer Analysis of Images and Patterns (Vol. 8047, pp. 154–162). Springer Berlin Heidelberg.
Abstract: State-of-the-art texture descriptors typically operate on grey scale images while ignoring color information. A common way to obtain a joint color-texture representation is to combine the two visual cues at the pixel level. However, such an approach provides sub-optimal results for texture categorisation task.
In this paper we investigate how to optimally exploit color information for texture recognition. We evaluate a variety of color descriptors, popular in image classification, for texture categorisation. In addition we analyze different fusion approaches to combine color and texture cues. Experiments are conducted on the challenging scenes and 10 class texture datasets. Our experiments clearly suggest that in all cases color names provide the best performance. Late fusion is the best strategy to combine color and texture. By selecting the best color descriptor with optimal fusion strategy provides a gain of 5% to 8% compared to texture alone on scenes and texture datasets.
Keywords: Color; Texture; image representation
|
|
Fahad Shahbaz Khan, Muhammad Anwer Rao, Joost Van de Weijer, Andrew Bagdanov, Maria Vanrell, & Antonio Lopez. (2012). Color Attributes for Object Detection. In 25th IEEE Conference on Computer Vision and Pattern Recognition (pp. 3306–3313). IEEE Xplore.
Abstract: State-of-the-art object detectors typically use shape information as a low level feature representation to capture the local structure of an object. This paper shows that early fusion of shape and color, as is popular in image classification,
leads to a significant drop in performance for object detection. Moreover, such approaches also yields suboptimal results for object categories with varying importance of color and shape.
In this paper we propose the use of color attributes as an explicit color representation for object detection. Color attributes are compact, computationally efficient, and when combined with traditional shape features provide state-ofthe-
art results for object detection. Our method is tested on the PASCAL VOC 2007 and 2009 datasets and results clearly show that our method improves over state-of-the-art techniques despite its simplicity. We also introduce a new dataset consisting of cartoon character images in which color plays a pivotal role. On this dataset, our approach yields a significant gain of 14% in mean AP over conventional state-of-the-art methods.
Keywords: pedestrian detection
|
|
David Augusto Rojas, Joost Van de Weijer, & Theo Gevers. (2010). Color Edge Saliency Boosting using Natural Image Statistics. In 5th European Conference on Colour in Graphics, Imaging and Vision and 12th International Symposium on Multispectral Colour Science (228–234).
Abstract: State of the art methods for image matching, content-based retrieval and recognition use local features. Most of these still exploit only the luminance information for detection. The color saliency boosting algorithm has provided an efficient method to exploit the saliency of color edges based on information theory. However, during the design of this algorithm, some issues were not addressed in depth: (1) The method has ignored the underlying distribution of derivatives in natural images. (2) The dependence of information content in color-boosted edges on its spatial derivatives has not been quantitatively established. (3) To evaluate luminance and color contributions to saliency of edges, a parameter gradually balancing both contributions is required.
We introduce a novel algorithm, based on the principles of independent component analysis, which models the first order derivatives of color natural images by a generalized Gaussian distribution. Furthermore, using this probability model we show that for images with a Laplacian distribution, which is a particular case of generalized Gaussian distribution, the magnitudes of color-boosted edges reflect their corresponding information content. In order to evaluate the impact of color edge saliency in real world applications, we introduce an extension of the Laplacian-of-Gaussian detector to color, and the performance for image matching is evaluated. Our experiments show that our approach provides more discriminative regions in comparison with the original detector.
|
|
Noha Elfiky, Fahad Shahbaz Khan, Joost Van de Weijer, & Jordi Gonzalez. (2012). Discriminative Compact Pyramids for Object and Scene Recognition. PR - Pattern Recognition, 45(4), 1627–1636.
Abstract: Spatial pyramids have been successfully applied to incorporating spatial information into bag-of-words based image representation. However, a major drawback is that it leads to high dimensional image representations. In this paper, we present a novel framework for obtaining compact pyramid representation. First, we investigate the usage of the divisive information theoretic feature clustering (DITC) algorithm in creating a compact pyramid representation. In many cases this method allows us to reduce the size of a high dimensional pyramid representation up to an order of magnitude with little or no loss in accuracy. Furthermore, comparison to clustering based on agglomerative information bottleneck (AIB) shows that our method obtains superior results at significantly lower computational costs. Moreover, we investigate the optimal combination of multiple features in the context of our compact pyramid representation. Finally, experiments show that the method can obtain state-of-the-art results on several challenging data sets.
|
|
Lichao Zhang, Abel Gonzalez-Garcia, Joost Van de Weijer, Martin Danelljan, & Fahad Shahbaz Khan. (2019). Learning the Model Update for Siamese Trackers. In 18th IEEE International Conference on Computer Vision (pp. 4009–4018).
Abstract: Siamese approaches address the visual tracking problem by extracting an appearance template from the current frame, which is used to localize the target in the next frame. In general, this template is linearly combined with the accumulated template from the previous frame, resulting in an exponential decay of information over time. While such an approach to updating has led to improved results, its simplicity limits the potential gain likely to be obtained by learning to update. Therefore, we propose to replace the handcrafted update function with a method which learns to update. We use a convolutional neural network, called UpdateNet, which given the initial template, the accumulated template and the template of the current frame aims to estimate the optimal template for the next frame. The UpdateNet is compact and can easily be integrated into existing Siamese trackers. We demonstrate the generality of the proposed approach by applying it to two Siamese trackers, SiamFC and DaSiamRPN. Extensive experiments on VOT2016, VOT2018, LaSOT, and TrackingNet datasets demonstrate that our UpdateNet effectively predicts the new target template, outperforming the standard linear update. On the large-scale TrackingNet dataset, our UpdateNet improves the results of DaSiamRPN with an absolute gain of 3.9% in terms of success score.
|
|
Simone Zini, Alex Gomez-Villa, Marco Buzzelli, Bartlomiej Twardowski, Andrew D. Bagdanov, & Joost Van de Weijer. (2023). Planckian Jitter: countering the color-crippling effects of color jitter on self-supervised training. In 11th International Conference on Learning Representations.
Abstract: Several recent works on self-supervised learning are trained by mapping different augmentations of the same image to the same feature representation. The data augmentations used are of crucial importance to the quality of learned feature representations. In this paper, we analyze how the color jitter traditionally used in data augmentation negatively impacts the quality of the color features in learned feature representations. To address this problem, we propose a more realistic, physics-based color data augmentation – which we call Planckian Jitter – that creates realistic variations in chromaticity and produces a model robust to illumination changes that can be commonly observed in real life, while maintaining the ability to discriminate image content based on color information. Experiments confirm that such a representation is complementary to the representations learned with the currently-used color jitter augmentation and that a simple concatenation leads to significant performance gains on a wide range of downstream datasets. In addition, we present a color sensitivity analysis that documents the impact of different training methods on model neurons and shows that the performance of the learned features is robust with respect to illuminant variations.
|
|
Kai Wang, Fei Yang, & Joost Van de Weijer. (2022). Attention Distillation: self-supervised vision transformer students need more guidance. In 33rd British Machine Vision Conference.
Abstract: Self-supervised learning has been widely applied to train high-quality vision transformers. Unleashing their excellent performance on memory and compute constraint devices is therefore an important research topic. However, how to distill knowledge from one self-supervised ViT to another has not yet been explored. Moreover, the existing self-supervised knowledge distillation (SSKD) methods focus on ConvNet based architectures are suboptimal for ViT knowledge distillation. In this paper, we study knowledge distillation of self-supervised vision transformers (ViT-SSKD). We show that directly distilling information from the crucial attention mechanism from teacher to student can significantly narrow the performance gap between both. In experiments on ImageNet-Subset and ImageNet-1K, we show that our method AttnDistill outperforms existing self-supervised knowledge distillation (SSKD) methods and achieves state-of-the-art k-NN accuracy compared with self-supervised learning (SSL) methods learning from scratch (with the ViT-S model). We are also the first to apply the tiny ViT-T model on self-supervised learning. Moreover, AttnDistill is independent of self-supervised learning algorithms, it can be adapted to ViT based SSL methods to improve the performance in future research.
|
|
Shida Beigpour, Marc Serra, Joost Van de Weijer, Robert Benavente, Maria Vanrell, Olivier Penacchio, et al. (2013). Intrinsic Image Evaluation On Synthetic Complex Scenes. In 20th IEEE International Conference on Image Processing (pp. 285–289).
Abstract: Scene decomposition into its illuminant, shading, and reflectance intrinsic images is an essential step for scene understanding. Collecting intrinsic image groundtruth data is a laborious task. The assumptions on which the ground-truth
procedures are based limit their application to simple scenes with a single object taken in the absence of indirect lighting and interreflections. We investigate synthetic data for intrinsic image research since the extraction of ground truth is straightforward, and it allows for scenes in more realistic situations (e.g, multiple illuminants and interreflections). With this dataset we aim to motivate researchers to further explore intrinsic image decomposition in complex scenes.
|
|
Rahma Kalboussi, Aymen Azaza, Joost Van de Weijer, Mehrez Abdellaoui, & Ali Douik. (2020). Object proposals for salient object segmentation in videos. MTAP - Multimedia Tools and Applications, 79(13), 8677–8693.
Abstract: Salient object segmentation in videos is generally broken up in a video segmentation part and a saliency assignment part. Recently, object proposals, which are used to segment the image, have had significant impact on many computer vision applications, including image segmentation, object detection, and recently saliency detection in still images. However, their usage has not yet been evaluated for salient object segmentation in videos. Therefore, in this paper, we investigate the application of object proposals to salient object segmentation in videos. In addition, we propose a new motion feature derived from the optical flow structure tensor for video saliency detection. Experiments on two standard benchmark datasets for video saliency show that the proposed motion feature improves saliency estimation results, and that object proposals are an efficient method for salient object segmentation. Results on the challenging SegTrack v2 and Fukuchi benchmark data sets show that we significantly outperform the state-of-the-art.
|
|
Carola Figueroa Flores, David Berga, Joost Van de Weijer, & Bogdan Raducanu. (2021). Saliency for free: Saliency prediction as a side-effect of object recognition. PRL - Pattern Recognition Letters, 150, 1–7.
Abstract: Saliency is the perceptual capacity of our visual system to focus our attention (i.e. gaze) on relevant objects instead of the background. So far, computational methods for saliency estimation required the explicit generation of a saliency map, process which is usually achieved via eyetracking experiments on still images. This is a tedious process that needs to be repeated for each new dataset. In the current paper, we demonstrate that is possible to automatically generate saliency maps without ground-truth. In our approach, saliency maps are learned as a side effect of object recognition. Extensive experiments carried out on both real and synthetic datasets demonstrated that our approach is able to generate accurate saliency maps, achieving competitive results when compared with supervised methods.
Keywords: Saliency maps; Unsupervised learning; Object recognition
|
|
Justine Giroux, Mohammad Reza Karimi Dastjerdi, Yannick Hold-Geoffroy, Javier Vazquez, & Jean François Lalonde. (2024). Towards a Perceptual Evaluation Framework for Lighting Estimation. In Arxiv.
Abstract: rogress in lighting estimation is tracked by computing existing image quality assessment (IQA) metrics on images from standard datasets. While this may appear to be a reasonable approach, we demonstrate that doing so does not correlate to human preference when the estimated lighting is used to relight a virtual scene into a real photograph. To study this, we design a controlled psychophysical experiment where human observers must choose their preference amongst rendered scenes lit using a set of lighting estimation algorithms selected from the recent literature, and use it to analyse how these algorithms perform according to human perception. Then, we demonstrate that none of the most popular IQA metrics from the literature, taken individually, correctly represent human perception. Finally, we show that by learning a combination of existing IQA metrics, we can more accurately represent human preference. This provides a new perceptual framework to help evaluate future lighting estimation algorithms.
|
|