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Abstract
Self-supervised learning has been widely applied to train high-quality vision trans-

formers (ViT). Unleashing their excellent performance on memory and compute constraint
devices is therefore an important research topic. However, how to distill knowledge from
one self-supervised ViT to another has not yet been explored. Moreover, existing self-
supervised knowledge distillation (SSKD) methods focus on ConvNet architectures and
are suboptimal for ViT knowledge distillation. In this paper, we study knowledge distilla-
tion of self-supervised vision transformers (ViT-SSKD). We show that directly distilling
information from the crucial attention mechanism from teacher to student can significantly
narrow the performance gap between both. In experiments on ImageNet-Subset and
ImageNet-1K, we show that our method AttnDistill outperforms existing self-supervised
knowledge distillation (SSKD) methods and achieves state-of-the-art k-NN accuracy
compared with self-supervised learning (SSL) methods learning from scratch (with the
ViT-S model). We are also the first to apply the tiny ViT-T model for self-supervised
learning. Moreover, AttnDistill is independent of self-supervised learning algorithms, and
it can be adapted to ViT based SSL methods to improve performance in future research.

1 Introduction
Vision transformers [18] have been widely applied in computer vision tasks, including
image classification [55, 62, 70], object recognition [4, 13, 19, 52, 76] and semantic seg-
mentation [12, 50, 64, 73]. ViTs contain a self-attention mechanism [59] that allows for
information exchange between distant patches and consequently leads to a more holistic
understanding of image content. Another important aspect of transformers is that they are
often pretrained in a self-supervised manner, followed by a finetuning stage to adapt to the
downstream task [15, 37]. ViTs suffer from high memory requirements and substandard
optimizability [11, 14, 25, 41, 60, 68], making them unsuitable for applications on memory or
computation constraint devices. Consequently, methods that can reduce the memory footprint
while maintaining the performance of ViTs are in demand.

One transfer learning technique is knowledge distillation [32]. Initial works focussed on
knowledge transfer for networks trained in a supervised manner [7, 57, 66, 69]. Recently, the
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theory was extended to distill knowledge of self-supervised feature representations generated
by large networks [21, 42, 43]. Since these networks do not output a conditional probability
over a label set, but rather a feature representation, alternative distillation techniques needed to
be developed [1, 21]. With the advent of transformers, supervised knowledge distillation for
transformers has recently been investigated [33, 38, 54]. However, methods that can transfer
self-supervised ViTs to smaller variants have not yet been explored.

Therefore, we explore knowledge distillation of self-supervised ViTs. We find that
existing theory designed to transfer knowledge of ConvNets trained in a self-supervised
manner results in a significant performance gap between teacher and student. To address this
problem, we explore attention distillation that focuses on transferring the information present
in the self-attention mechanism. Rather than just communicating the teacher’s conclusion
which is the focus of most traditional knowledge distillation methods, attention distillation
provides more guidance to the student network by identifying the important regions for
understanding the image content. The potential of attention distillation has been explored
for ConvNet [24, 71], however, since for these networks attention is not explicitly computed,
additional computation and attention definition are needed. Since the attention mechanism is
an integral and crucial part of transformers and no additional computation is required, we
argue that attention distillation is a natural extension of the existing distillation theory for
transformer networks.

In this paper, we focus on self-supervised knowledge distillation of self-supervised vision
transformers (ViT-SSKD). First, we propose to use a projector alignment (PA) module to align
the class tokens from teacher and student models. Second, we propose attention guidance (AG)
with the Kullback–Leibler divergence to guide the student to obtain similar attention maps as
the teacher model to further enhance the distillation. With these two modules, we can obtain
state-of-the-art performance compared with self-supervised algorithms. Furthermore, we are
the first to successfully train a small ViT-T model based on self-supervised learning (SSL) with
knowledge distillation. More importantly, there might be more complex and outperforming
SSL pretrained models in the future. In that case our method can be applied directly to obtain
a smaller model while keeping competitive performance. Our main contributions are:

• We are the first to study the important ViT-SSKD problem allowing to transfer knowl-
edge to small transformers in a self-supervised fashion.

• We propose an attention distillation loss for improved guidance of the student during
knowledge distillation. Our method, AttnDistill, significantly reduces the gap between
teacher and student models.

• We are the first to train a self-supervised ViT-T model. It obtains a performance almost
(-0.3%) at par with the supervised ViT-T model.

2 Related work

Self-supervised learning. SSL [8, 9, 16, 23, 26, 29, 30, 58, 63] automatically derives a
supervisory signal for the training of high-quality feature representations, preventing the need
of large labeled datasets. The common paradigm here is to pretrain on ImageNet [49] and
then evaluated on downstream tasks, on which it has reached excellent performance, closing
the gap with supervised methods. Recent popular SSL methods can be divided into two
streams. Contrastive learning [6, 8, 27, 29] is the most popular stream. Another stream of
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representation learning, named masked image encoding [3, 17, 30, 74], learns representations
from corrupted images. In this paper, we study knowledge distillation for SSL based on both
technical streams. From the aspect of backbone architectures, the previous methods are all
based on ConvNet [5, 8, 26]. Recently, with the appearance of ViT, these are also applied for
SSL (DINO [6], MoCo [10], etc). Compared with ConvNet, the attention-based ViTs suffer
less from an image-specific inductive bias and have a larger potential when training on large
scale datasets. In this paper we focus on the original ViT design, but the method could also be
generalized to Swin Transformer [39] based SSL methods [37, 65].
Knowledge distillation for self-supervised models. Most knowledge distillation [32] tech-
niques are proposed under the supervised learning scenario [2, 7, 44, 46, 48, 53, 57, 69, 71, 72].
Under the SSL settings, CC [43] exploit pseudo labels from clustering teacher embeddings as
distillation signals. Then SEED [21] and CompRess [1] maintain memory banks to store a
huge number of samples to calculate instance-level similarity score distributions for aligning
the teacher and student models. SimReg [42] has similar projector architecture as our method,
where they use the projector to align the teacher and student features. However, in some cases
when the student ViT architectures become quite different from the teacher model, only pro-
jector regression is not sufficient to transfer knowledge from the teacher to the student model.
Reg [67] is specified for metric learning, which could also be applied to self-supervised
representation distillation. Recently, KDEP [31] propose the power temperature scaling to
distill representation from a supervised teacher model.

Except for these examples in computer vision, there are several distillation attempts in
NLP [20, 34, 51, 61]. However, these methods are limited to the case that teacher-student
models share similar architectures. Also, Pelosin et al. [45] apply attention distillation between
similar transformer architectures for continual learning. Our proposal is a more generalizable
framework and allows for attention distillation between different ViT architectures.

3 Methodology

3.1 Preliminaries

Vision Transformers Architecture. Here we consider the ViT proposed in [18] but the
theory is general and can be extended to other transformer architectures. The ViT consists of a
patch embedding part, where the transformer encoder is a stack of L multi-head self-attention
blocks (MH-SAB). In each MH-SAB, there are two parts: a multi-head self-attention module
(MSA) and a fully connected feedforward module (MLP). Each self-attention module has
H heads. We will further use d as the output dimension for each head and N as the number
of patches. Also considering the class token, we can denote the output of the lth MH-SAB
as zl ∈ R(N+1)×(dH), l ∈ [1,L]. z0 is the encoded patch embedding of image x (i.e., from z0

1
to z0

N) and the initial class token (i.e., z0
0). For the hth head in the self-attention module,

learnable parameters W l,h
Q ,W l,h

K ,W l,h
V implemented as FC layers, map one slice of the input

tokens zl−1,h into the queries, keys and values (Ql,h,Kl,h,V l,h ∈ R(N+1)×(d)). We obtain the
attention map with Eq. 1, where Al,h ∈ R(N+1)×(N+1), and the output of this head is obtained
by Eq. 2. Combining the multiple head outputs, we obtain the final output of this multi-head
self-attention layer (see Eq. 3). Finally, with the MLP and layer normalization (LN), the
output tokens produced by the lth MH-SAB are given by Eq. 4. We have shown the process
of the last MH-SAB from both the teacher and student ViT separately in Fig. 1 (the design is
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Figure 1: AttnDistill for ViT-SSKD on the last block of the ViT. It is composed of the projector
alignment loss Lc and attention guidance loss La. The class tokens are taken from the last
layer of the teacher and student ViT. We only consider the attention vectors that are formed
by the interaction of the class token query with all keys for distillation.

inspired from [22].) which includes the key components in our approach.

Al,h = Softmax(Ql,h · (Kl,h)T/
√

d) (1)

yl,h = Al,h ·V l,h (2)

yl = concat(yl,1,yl,2, ...,yl,H) (3)

zl = MLP
(

LN
(

yl + zl−1
))

+ zl−1. (4)

3.2 AttnDistill: Attention distillation
An outline of AttnDistill is given in Fig. 1. It can be divided into two parts: projector alignment
(PA) and attention guidance (AG). For our distillation, we do not need to generate multiple
views, since we focus on distilling the knowledge of the teacher. So other than contrastive-
based SSL methods [6, 74, 75], in this phase we do not rely on multi-crop augmentations.
Thus, we have less computation costs and the effective epoch is equal to the training epoch.
Projector alignment (PA). Suppose we have a teacher-student pair, each with a ViT architec-
ture named Vt and Vs. In self-supervised knowledge distillation, our aim is to distill knowledge
from the teacher to the student model in a SSL way while maintaining its transferability. In
most cases, we expect a smaller student model compared to the teacher. The parameter size is
highly dependent on the feature dimension in the ViT. Thus, Vt and Vs typically have different
feature dimensions. Therefore, we introduce a linear mapping projector P to map the student
to the teacher feature space for alignment. And since in ViT, the class token embedding
Ec = zL

0 is the most representative embedding for a classification decision, in AttnDistill, we
only map the class token from the last layer for aligning the teacher and student model with a
MSE loss to communicate with the final output from the teacher:

Lc = ||Ec
t −P(Ec

s)||2 (5)
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Figure 2: Attention guidance between varying transformer architectures.

where ‘s/t’ subscripts represent ‘student/teacher’. In our ablation study, we also explored the
influence of aligning the image patch embeddings zL

i , i ∈ [1,N] with the linear mapping P .
Attention guidance (AG). However, aligning the class tokens can only tell the student model
about "what" is in the image. More guidance from the teacher explaining "why" it reached
this conclusion could be helpful. This extra guidance can be extracted from the multi-head
self-attention (MSA) mechanism in ViTs. The MSA module pays attention to the decisive
and informative parts in the image. Actually, we can observe that distillation with other
methods will lead to attention drift where the student attention differs from the teacher (see
the attention maps in Fig. 3.)

For a ViT, each Al,h given by layer l head h is an attention map from all tokens to all tokens.
And since AL,h

0, j , j ∈ [0,N] (‘0’ represents the first row of the attention map AL,h.) contains the
attention probabilities for the class token, it represents the importance of each token for the
classification prediction of the image. By denoting A =AL

0 ,A
h =AL,h

0 ,ah
j =AL,h

0, j , we propose
to apply Kullback–Leibler divergence (KL) to make the student model pay attention to the
same regions as the teacher model by aligning As and At . We also study the performance
with attentions from all layers in our ablation study section. To address knowledge transfer
between ViTs with different designs, several cases need to be addressed. Here, we categorize
them into four cases that might occur and discuss the solution below. The illustration of these
variations are provided in Fig. 2.

(a) The teacher and student models have the same number of heads H = Ht = Hs and patches
N = Nt = Ns (see Fig.2 (a)). This is the simplest case, where we align according to:

La = ∑
h∈[1,H]

KL(Ah
t ||Ah

s ) (6)

(b) The teacher and student models have the same number of heads H but a different number
of patches Nt and Ns (see Fig.2 (b)). In this case, we propose to interpolate (IP, by
default we apply bicubic function [35] as a smoother interpolation) the teacher model
attention map (ah

j)t , j ∈ [1,Nt ] into (ah
j)
′
t , j ∈ [1,Ns] (Nt = w×h,Ns = w′×h′), and then
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normalize (NR) them into 1− (ah
0)t by scaling up to have the attentions sum to 1 as in

Eq. 7. Then the attention guidance loss is given by Eq. 8.

(ah
j)
′
t = NR1−(ah

0)t
(IP((ah

j)t)) (7)

La = ∑
h∈[1,H]

KL((Ah)
′
t ||Ah

s ) (8)

(c) The teacher and student models have the same number of patches N but a different number
of heads H (see Fig.2 (c)). Here we merge the attentions from all heads for distillation.
We have considered several aggregation functions, including mean, maximum and soft-
maximum. We found that using the log summation to aggregate the attention probabilities
for both teacher and student models (see Eq. 9 and Eq. 10) leads to slightly superior
results compared to max-based fusion. Then the attention guidance loss La is as Eq. 11.

a j =
1
T
· ∑

h∈[1,H]

log(ah
j) =

1
T
· log( ∏

h∈[1,H]

ah
j) (9)

A =Softmax([a0,a1, ...,aN ]) (10)
La =KL(At ||As) (11)

This aggregation could effectively highlight the maximum probabilities from the atten-
tion maps of the H heads, as can be seen from our ablation study.

(d) The teacher and student models have a different number of heads H and patches N. This
case is a combination of the above two, thus we apply interpolation and aggregation
sequentially and then apply distillation.

Finally, the self-supervised loss to update the student model Vs is:

L= Lc +λ ·La (12)

4 Experiments

4.1 Pre-Training setup

Datasets. In our experiments, ImageNet-Subset [49] is used for ablation study and to
compare with other self-supervised knowledge distillation methods. This dataset contains
100 classes and ≈130k images in high resolution (resized to 224×224) [47]. For comparison
with SSL methods, we employ the ImageNet-1K dataset [49].
Architecture. For the Teacher-Student pairs, we focus on knowledge distillation from a
larger ViT teacher model to a smaller ViT student model. Due to the high computation
demands of ViT, we select Teacher-Student pairs as below:

• On ImageNet-1K we select the following three pairs (Teacher →Student): (a) Mugs(ViT-
S/16) →ViT-T/16; (b) Mugs(ViT-B/16) →ViT-S/16; (c) DINO(ViT-S/8) →ViT-S/16;

• On ImageNet-Subset, we fix the teacher model as MAE(ViT-S/16) with 12-Layer,
6-Head, 16-Patch and vary the design of the student model in the ablation study.
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Teacher model Method Student Arch. Par.(M) Train Epo. Effect Epo. k-NN LP.

7 Supervised ViT-T/16 5.7 - - 72.2 72.2
SwAV (RN-50) CRD RN-18 11 240 240 44.7 58.2
SwAV (RN-50) CC RN-18 11 100 100 51.0 60.8
SwAV (RN-50) Reg RN-18 11 100 100 47.6 60.6
SwAV (RN-50) CompRess-2q RN-18 11 130 130 53.7 62.4
SwAV (RN-50) CompRess-1q RN-18 11 130 130 56.0 65.6
SwAV (RN-50) SimReg RN-18 11 130 130 59.3 65.8

SwAV (RN-50×2) SEED RN-18 11 200 200 55.3 63.0
SwAV (RN-50×2) SEED EffNet-B1 7.8 200 200 60.3 68.0
SwAV (RN-50×2) SEED EffNet-B0 5.3 200 200 57.4 67.6
SwAV (RN-50×2) SEED MbNet-v3 5.5 200 200 55.9 68.2
Mugs (ViT-S/16) AttnDistill ViT-T/16 5.7 500 500 71.4 71.9

7 Supervised ViT-S/16 22 - - 79.8 79.8
7 SimCLR ViT-S/16 22 300 600 - 69
7 BYOL ViT-S/16 22 300 600 - 71
7 MoCo v3 ViT-S/16 22 600 1200 - 73.4
7 SwAV ViT-S/16 22 800 2400 66.3 73.5
7 DINO ViT-S/16 22 800 3200 74.5 77.0
7 iBOT ViT-S/16 22 800 3200 75.2 77.9
7 MUGS ViT-S/16 22 800 3200 75.6 78.9

SwAV (RN-50×2) SEED RN-34 21 200 200 58.2 65.7
SwAV (RN-50×2) SEED RN-50 24 200 200 59.0 74.3

SimCLR (RN-50×4) CompRess-1q RN-50 24 130 130 63.3 71.9
SimCLR (RN-50×4) CompRess-2q RN-50 24 130 130 63.0 71.0
SimCLR (RN-50×4) CC RN-50 24 100 100 55.6 68.9
SimCLR (RN-50×4) SimReg RN-50 24 130 130 60.3 74.2

Mugs (ViT-B/16) AttnDistill ViT-S/16 22 800 800 76.8 78.6
DINO (ViT-S/8) AttnDistill ViT-S/16 22 800 800 77.4 78.8

Teacher Models statistics
Mugs (ViT-S/16) - - 22 800 3200 75.6 78.9
DINO (ViT-S/8) - - 22 800 3200 78.3 79.7
Mugs (ViT-B/16) - - 85 400 1600 78.0 80.6
SwAV (RN-50) - - 24 800 2400 64.8 75.6

SwAV (RN-50×2) - - 94 800 2400 - 77.3
SimCLR (RN-50×4) - - 375 1000 2000 64.5 75.6

Table 1: Comparison with state-of-the-art SSL methods
with k-NN and linear probing (LP.) on ImageNet-1K. "Ef-
fect Epo." is the effective pretraining epochs computed
by multiplying number of views processed by the models
following iBOT [74].

IMG AGGR head 1 head 2

head 3 head 4 head 5 head 6

Teacher  
(MAE-ViT-S, 12-Layer, 6-Head, 384-dim, 16-Patch)

CC

AGGR head 1 head 2 head 3

KDEP

SEED

Student  
(ViT-T, 8-Layer, 3-Head, 192-dim, 32-Patch)

Reg

SimReg

OURs

Figure 3: For the teacher model,
we show the original image,
the aggregated attention map
(AGGR) and the attention maps
for each head. The KL distances
to the teacher AGGR are shown.

Moreover, since MAE/MoCo-v3 and DINO/iBOT/Mugs are following different position
embedding strategies (fixed vs. learnable), our teacher-student pairing setups can show the
effectiveness of AttnDistill for these two kind of position encodings.

Implementation details. We train our AttnDistill with the AdamW [40] optimizer. The
learning rate is linearly ramped up during the first 40 epochs to the base learning rate
lr = (1.5e− 4)× batchsize/256. After the warming up epochs, we decay it with a cosine
schedule till 800 epochs (except the distillation from Mugs(ViT-S/16) to ViT-T/16, where we
train for 500 epochs because of performance saturation). By default, we set T = 10.0 and
λ = 0.1, the projector P is a 4-layer linear mapping. For the evaluations of the student model,
we found it is optimal to perform with the features before the P . For the experiments on
ImageNet-Subset, we fix the teacher model as a ViT-S/16 pre-trained with MAE [30] method
with 3200 epochs. More details are in our supplementary materials.
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4.2 Comparison with state-of-the-art

Comparison with SSKD methods on ViT. As shown in Table 2, we compare several
methods to distill a MAE(ViT-S/16) teacher to a ViT-T student on ImageNet-Subset. Next
to the common ViT-T architecture (with 12-layers, 6-heads, 16-patches), we also consider a
harder variant (with 8-layers, 3-heads, 32-patches) as the student model. AttnDistill clearly
outperforms them all in both cases. The margin is larger for the harder setup. This also
indicates the importance of the attention distillation guidance. A comparison of the attention
maps from the 8-layer 3-head 32-patch student case is shown in Fig. 3.
Comparison with SSL methods with linear probing, k-NN and finetuning accuracies.
For linear probing and k-NN evaluation on ImageNet-1K, we follow the commonly used
setting in DINO [6] and iBOT [74]. The comparison is shown in Table 1. We draw the
following conclusions:

• Based on ViT-T/16 distilled from Mugs(ViT-S/16), our method AttnDistill gets state-of-the-
art k-NN and Linear probing performance compared with previous knowledge distillation
methods based on ConvNet. AttnDistill (ViT-T/16) is with only 5.7M parameters but
outperforms the previous methods by a large margin and gets quite close to the supervised
ViT-T/16 learning from scratch. In this case, we only train the student model for 500 epochs
since we have observed marginal improvement on linear probing after that.

• Based on ViT-S/16 distilled from DINO(ViT-S/8), our method AttnDistill gets state-of-
the-art in k-NN and the second in linear probing. This distillation decreases the ViT
computational demand since there are 75% less patches in ViT-S/16 than ViT-S/8. Then,
based on ViT-S/16 distilled from Mugs(ViT-B/16), AttnDistill gets the second in k-NN and
the third in linear probing evaluations. In this case, the model size is decreased by 75%.

Moreover, we could further observe the advantage of ViT in k-NN evaluations, which
means the extracted features from self-supervised pretrained ViT are more beneficial without
learning an extra classifier as in linear probing evaluations. The accuracy curves during
training are shown in Fig. 4.

For the finetuning comparison on ImageNet-1K shown in Table 3, we compared with
existing methods working on ViT-T and ViT-S. AttnDistill (ViT/T) and AttnDistill (ViT/S) are
distilled from Mugs (ViT-B) and Mugs (ViT-S) respectively. In both cases, AttnDistill works
better than supervised learning methods and just marginally worse than the state-of-the-art
with ViT-S. In conclusion, whereas AttnDistill is state-of-the-art for k-NN evaluation (Table 1),
this is not the case when evaluating by means of finetuning.
Comparison with SSL methods on downstream tasks. For semi-supervised learning,
results with SSL methods based on ViT-S/16 are shown in Table 4. In this setting, first,
models are trained self-supervised on all ImageNet-1K data. Next labels for a small fraction
of data (1% or 10%) are used to perform fine-tuning, linear probing or k-NN classification.
Under all three settings with only 1% of the data, we can observe a considerable advantage of
AttnDistill with a 3.9%/2.6%/5.8% improvement compared with Mugs(ViT-S/16). With 10%
data, the improvement is less but still notable as 0.4%/2.7%/3.1%.

We also evaluate AttnDistill (ViT-T) for transfer learning. We compare with supervised
ViT models, since there are no papers using ViT-T for SSL. Results are summarized in Table 5)
for several small datasets. AttnDistill gets a 2.3% improvement compared with the previous
best supervised learning method CCT-7/3x1 [28]. Next, we consider transfer learning of
AttnDistill (ViT-S) in Table 6. Here we compare with previous SSL methods, we are only
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Method Top-1 Top-5 Top-1 Top-5

Student
ViT-T Arch. 12-L, 6-H, 16-P 8-L, 3-H, 32-P

Teacher
MAE-S/16 79.4 93.6 79.4 93.6

SEED [21] 71.7 90.7 66.8 88.4
CompRess [1] 71.9 90.8 67.2 88.7
CC [43] 63.8 87.6 47.1 74.9
KDEP [31] 66.7 87.8 57.8 82.4
Reg [67] 76.2 92.5 69.6 89.0
SimReg [42] 77.8 93.4 68.6 88.8

AttnDistill 79.3 94.1 73.8 91.7

Table 2: Compare with
SSKD methods on ImageNet
Subset with top-1/top-5 (LP.)

Method Arch.(M) Effect Epo. FT Acc.

Supervised learning
- ViT-T/16 - 72.2
- ViT-S/16 - 79.8
DeiT ViT-S/16 - 81.3
DeiT-III [56] ViT-S/16 - 81.4
Manifold [33] ViT-S/16 - 81.5
MKD [38] ViT-S/16 - 82.1

Self-Supervised learning
MoCo v3 ViT-S/16 600 81.4
DINO ViT-S/16 3200 82.0
iBOT ViT-S/16 3200 82.3
Mugs ViT-S/16 3200 82.6
AttnDistill ViT-T/16 500 72.9
AttnDistill ViT-S/16 800 81.6

Table 3: Finetuning compari-
son on ImageNet1K.

Method Arch FT LP k-NN
1% 10% 1% 10% 1% 10%

SimCLR RN50 57.9 68.1 - - - -
BYOL RN50 53.2 68.8 - - - -
SwAV RN50 53.9 70.2 - - - -
SimCLR+SD RN50 60.0 70.5 - - - -
DINO ViT-S/16 60.3 74.3 59.1 70.3 61.2 69.0
iBOT ViT-S/16 61.9 75.1 61.5 71.8 62.5 70.1
Mugs ViT-S/16 66.8 76.8 64.1 72.2 63.6 70.6
AttnDistill ViT-S/16 70.7 77.2 66.7 74.9 69.4 73.7

Table 4: Semi-supervised
learning on ImageNet1K. At-
tnDistill (ViT-S) is distilled
from the teacher model Mugs
(ViT-B/16) for 800 epochs.

Method Par.(M) CIFAR100 CIFAR10

Supervised learning
SL-CaiT [36] 9.2 80.3 95.8
SL-T2T [36] 7.1 77.4 95.6
SL-Swin [36] 10.2 80.0 95.9
CVT-7/4 [28] 3.7 73.0 92.4
CCT-7/3x1 [28] 3.8 82.7 98.0

Self-Supervised + Transfer learning
AttnDistill (ViT-T) 5.7 85.0 98.1

Table 5: Transfer learning comparison on
CIFAR10/CIFAR100. AttnDistill (ViT-T)
is distilled from Mugs(ViT-S/16).

Method Par.(M) CIFAR100 CIFAR10 Flowers Cars

Supervised + Transfer learning
- 22 89.5 99.0 98.2 92.1
DeiT-III [56] 22 90.6 98.9 96.4 89.9

Self-Supervised + Transfer learning
BEiT 22 87.4 98.6 96.4 92.1
DINO 22 90.5 99 98.5 93.0
iBOT 22 90.7 99.1 98.6 94.0
Mugs 22 91.8 99.2 98.8 93.9
AttnDistill (ViT-S) 22 91.6 99.1 98.6 93.8

Table 6: Compared with SSL methods on four
small datasets. AttnDistill (ViT-S) is distilled
from the teacher Mugs (ViT-B/16).

marginally worse than the state-of-the-art and much better than the supervised distillation
method DEiT [54].

4.3 Ablation study
To prove the generalizability of AttnDistill, we perform an ablation study on ImageNet-Subset
with a fixed MAE(ViT-S/16) teacher and vary the architecture of the student model. Extended
ablation studies are in the supplementary. In Fig. 5, our ablation study contains three parts:

(a) The architecture of ViT (in Fig. 5-(a)) : To verify the effectiveness of AttnDistill for
various architectures of ViT, we modify the number of heads, patch sizes and the number
of block layers. In all cases, AttnDistill significantly improves the PA baseline and closes
the gap with the teacher performance. Especially, for the smaller student architectures
and those with fewer tokens, attention distillation is shown to be crucial leading to
improvements of over 5%.

(b) The various aggregation functions (in Fig. 5-(b)) : Here we fix the design of the
student model and vary the strategy to compute the attention guidance loss. To verify
the superiority of the used log summation in Eq. 9, we replace it with MEAN/MIN/MAX
strategies to aggregate attention maps from different heads. However, they are all
suboptimal.

(c) Alternative self-supervised losses (in Fig. 5-(c)) : A recent work for distillation of self-
supervised representations of ConvNet is CompRess [1]. Here, we apply the knowledge
distillation loss from CompRess [1] to our PA module, we can clearly observe that this
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Figure 4: More results of AttnDistill with different training epochs on ImageNet-1K.
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Figure 5: Ablation study for ViT architectures, aggregation functions and alternative losses.

KD loss is an obstacle in ViT distillation since when combined with our PA module it
leads to a performance drop. Except distilling the attention maps from the last layer, we
also experiment the distillation over attention maps from all layers. This is 0.6% lower
than AttnDistill based on only the last layer. Finally, we also align the patch tokens
with our PA module. This is 2.4% worse than without the patch token alignment, thus
aligning patch tokens is not necessary.

5 Conclusion

In this paper, we explored the ViT-based self-supervised knowledge distillation problem.
Observing that the previous SSKD methods focussed on ConvNet do not work well on ViT,
we proposed AttnDistill to distill the knowledge from a pretrained teacher model to its student
model. The experiments clearly show that AttnDistill outperforms other SSKD methods.
Furthermore, our distilled ViT-S gets state-of-the-art in k-NN accuracy and is second in
linear probing compared with SSL methods. Also, our method AttnDistill is especially
advantageous in semi-supervised learning evaluation and competitive in transfer learning
evaluation. To prove the effectiveness of AttnDistill, we also implement various ablation
studies on ImageNet-Subset. For future work, we are interested to explore AttnDistill for
knowledge distillation between ConvNets and ViT.
Limitations. A drawback of the attention mechanism is that it is tailored for transformer usage
and requires additional computation when applied to ConvNets (namely the computation of
the attention maps). A further limitation is that the theory only applies to a single teacher-
student pair. In case of multiple teacher models, further thought has to be given on how the
multiple attention maps can be meaningfully communicated with the student.
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1 Table 2 visualization
A graphical visualization for Table 2 in the main paper is shown in Fig. 6, where you can
easily observe the performance difference between each teacher and student pair. We can
also observe that the performance drop from linear probing to k-NN is effectively reduced by
AttnDistill.

2 Networks configurations
In this paper, our networks configurations mainly refer to the ViT designs in DINO [1],
DEiT [9], Mugs [12] and iBOT [11], where the number of heads H and position embedding
(PE) strategy (learnable PE and ViT-S with 6 head) are different from MoCo v3 [3] (fixed
sin-cos PE and ViT-S with 12 head). The detailed networks configurations are shown in
Table 7.

3 Additional Implementations

3.1 Pre-Training recipe
A clear pre-training recipe is shown in Table 8. We mainly refer to the training recipe from
MAE [5].

3.2 More details for evaluations
k-NN, Linear Probing and finetuning on ImageNet-1K. To evaluate the quality of pre-
trained features, we either use a k-nearest neighbor (k-NN) classifier or a linear classifier

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Figure 6: Visualization of Table 2 results, providing both the linear probing and k-NN
accuracies for multiple methods. Note that AttnDistill significantly reduces the gap with the
teacher model.

18 KAI WANG ET AL.: ATTENTION DISTILLATION



KAI WANG ET AL.: ATTENTION DISTILLATION 3

Networks configurations for experiments on ImageNet-1K

PE model layers dim heads patch size #tokens #params

Teacher learnable
Mugs (ViT-S/16) 12 384 6 16 197 22M
DINO (ViT-S/8) 12 384 6 8 785 22M
Mugs (ViT-B/16) 12 768 12 16 197 85M

Student learnable AttnDistill (ViT-T/16) 12 192 3 16 197 5.7M
AttnDistill (ViT-S/16) 12 384 6 16 197 22M

Networks configurations for experiments on ImageNet-Subset

Teacher sin-cos MAE (ViT-S/16) 12 384 6 16 197 22M

Student sin-cos

AttnDistill (ViT-T) 12 192 6 16 197 5.7M
AttnDistill (ViT-T) 12 192 3 16 197 5.7M
AttnDistill (ViT-T) 12 192 3 32 65 5.7M
AttnDistill (ViT-T) 8 192 3 16 197 3.8M
AttnDistill (ViT-T) 8 192 3 32 65 3.8M

Table 7: Networks configuration. “layers” is the number of Transformer blocks, “dim” is
channel dimension and “heads” is the number of heads in multi-head attention. “# tokens” is
the length of the token sequence, “# params” is the total number of parameters. “PE” is the
position embedding strategy. We consider 224×224 resolution inputs.

config value

optimizer AdamW [8]
base learning rate 1.5e-4
weight decay 0.05
optimizer momentum β1,β2 = 0.9,0.95 [2]
batch size 4096
learning rate schedule cosine decay [7]
warmup epochs 40

training epochs
500 (ViT-T/16 ImageNet-1K)
800 (ViT-S/16 ImageNet-1K)

3200 (ViT-T/16 ImageNet-Subset)
augmentation RandomResizedCrop

Table 8: Pre-Training settings for ViTs distillation on ImageNet-1K and ImageNet-Subset.

config value

optimizer LARS [10]
base learning rate 0.1

weight decay 0
optimizer momentum 0.9

batch size 16384
learning rate schedule cosine decay

warmup epochs 10
training epochs 90
augmentation RandomResizedCrop

Table 9: Linear probing setting on ImageNet-Subset for self-supervised knowledge distilla-
tion with a MAE(ViT-S/16) teacher.
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on the frozen representation. We follow the evaluation protocols in DINO [1], iBOT [11],
Mugs [12]. For k-NN evaluation, we sweep over different numbers of nearest neighbors. For
linear probing and finetuning evaluations, we sweep over different learning rates.

Semi-supervised learning on ImageNet-1K. In this setting, first, models are trained self-
supervised on all ImageNet-1K data. Next, labels for a small fraction of data (1% or 10%) are
used to perform fine-tuning, linear probing or k-NN classification. This is also an extension
to the semi-supervised learning evaluations in DINO, iBOT and Mugs papers. For k-NN
evaluation, we sweep over different numbers of nearest neighbors. For linear evaluation, we
sweep over different learning rates. For fine-tuning evaluation, we fine-tune the pre-trained
backbone for 1000 epochs with learning rate set to 5e-6.

Transfer learning. We pretrain the model on ImageNet-1K, and then fine-tune the pre-
trained backbone on various datasets with the same protocols and optimization settings as
in DINO, iBOT, and Mugs. For both ViT-T and ViT-S, we use AdamW optimizer with a
minibatch of 1024, we fine-tune the pretrained model 1000 epochs by sweeping the learning
rates. The weight decay is fixed to be 0.05.

Linear probing evaluation on ImageNet-Subset Since on ImageNet-Subset we consider
the MAE as the teacher, thus in linear probing, we also follow the evaluation protocols from
MAE [5] as shown in Table 9.

4 MAE pretraining on ImageNet-Subset
The linear probing curves of MAE [5] pre-training on ImageNet-Subset is shown in Fig. 7 for
further references (from 1200 epochs to 3200 epochs). We can observe that both ViT-S(12-
layers, 6-heads, 16-patches, 384-dim) and ViT-T(12-layers, 6-heads, 16-patches, 192-dim)
both are saturated at 3200 epochs.

5 Additional ablation studies.
To prove the generalizability of AttnDistill, we perform the ablation study on ImageNet-
Subset with a fixed MAE(ViT-S/16) teacher and vary the architecture of the student model.
Apart from the ablation studies shown in Fig.5 in the main paper, here we extend the ablation
studies and also display all the numbers included in Fig.5. As can be seen from Table 10,
our ablation study can be roughly divided into six parts. The beginning three parts (a)-(c)
are corresponding to the Fig.5(a)-(c). Except that, we further show our ablation study on the
following three aspects:

• The design of the linear mapping P: In Table 10-(d), we vary the number of P layers in
{1,2,4,8} and evaluate the output features from each layer. As can be seen that, the output
feature before P (indicated by a 0 in column Evaluation P layer) is always a good choice
for all considered layer-numbers variations. Also, for the number of layers 4 is a better
choice.

• The hyperparameter of AttnDistill: In Table 10-(e) and Fig. 8, we ablate the λ and T . The
optimal choice is λ = 0.1,T = 10.0.
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Figure 7: MAE pretrained on ImageNet-Subset with ViT-S and ViT-T models.
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Figure 8: Ablation study over T and λ .

• Other ablation studies: here we fix the design of the student model and vary the strategy
to compute the attention distillation loss. We imitate the ATS [4] to compute the token
scores with the norm of Value vectors in the MSA module of ViTs. We also replace the KL
divergence in La with MSE loss. Neither of them could work better than our solution.

KAI WANG ET AL.: ATTENTION DISTILLATION 21



6 KAI WANG ET AL.: ATTENTION DISTILLATION

Dataset: ImageNet-Subset
Teacher: ViT-S (12-Layer, 6-Head, 16-Patch, 3200 epo., 384 dim); Top-1 LP.: 79.4; Top-5 LP.: 93.6
Student: ViT-T (12-Layer, 6-Head, 16-Patch, 3200 epo., 192 dim); Top-1 LP.: 63.7; Top-5 LP.: 86.2
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(a)

Heads

12 3 16 ✓ ✗ ✗ 4 - ✗ ✗ ✗ - - 0 77.8 93.6
12 3 16 ✓ ✗ ✗ 4 last ✓ ✓ ✗ 0.1 10.0 0 78.9 93.8
12 6 16 ✓ ✗ ✗ 4 - ✗ ✗ ✗ - - 0 77.8 93.3
12 6 16 ✓ ✗ ✗ 4 last ✓ ✓ ✗ 0.1 10.0 0 78.9 93.9
12 6 16 ✓ ✗ ✗ 4 last ✓ ✗ ✗ 0.1 - 0 79.3 94.1

Patch size

12 6 28 ✓ ✗ ✗ 4 - ✗ ✗ ✗ - - 0 73.3 91.1
12 6 28 ✓ ✗ ✗ 4 last ✓ ✗ ✓ 0.1 - 0 77.3 93.1
12 6 32 ✓ ✗ ✗ 4 - ✗ ✗ ✗ - - 0 73.1 91.0
12 6 32 ✓ ✗ ✗ 4 last ✓ ✗ ✓ 0.1 - 0 77.2 92.8

Layers 8 6 16 ✓ ✗ ✗ 4 - ✗ ✗ ✗ - - 0 77.7 92.8
8 6 16 ✓ ✗ ✗ 4 last ✓ ✗ ✗ 0.1 - 0 79.1 94.0
8 3 32 ✓ ✗ ✗ 4 - ✗ ✗ ✗ - - 0 68.6 88.8
8 3 32 ✓ ✗ ✗ 4 last ✓ ✓ ✓ 0.1 10.0 0 73.8 91.7

(b)

PA 8 3 32 ✓ ✗ ✗ 4 - ✗ ✗ ✗ - - 0 68.6 88.8
AttnDistill 8 3 32 ✓ ✗ ✗ 4 last ✓ ✓ ✓ 0.1 10.0 0 73.8 91.7

MAX 8 3 32 ✓ ✗ ✗ 4 last ✓ ✓ ✓ 0.1 10.0 0 73.5 91.6
MEAN 8 3 32 ✓ ✗ ✗ 4 last ✓ ✓ ✓ 0.1 10.0 0 70.6 90.0
MIN 8 3 32 ✓ ✗ ✗ 4 last ✓ ✓ ✓ 0.1 10.0 0 71.9 90.7

(c)

KD 12 6 16 ✓ ✗ ✓ 4 - ✗ ✗ ✗ - - 0 75.0 92.5
12 6 16 ✗ ✗ ✓ 4 - ✗ ✗ ✗ - - 0 71.7 90.7

Patch 12 6 16 ✗ ✓ ✗ 4 - ✗ ✗ ✗ - - 0 73.6 91.4
12 6 16 ✓ ✓ ✗ 4 - ✗ ✗ ✗ - - 0 76.9 93.4

Attn Layer 12 6 16 ✓ ✗ ✗ 4 all ✓ ✗ ✗ 0.1 - 0 78.7 93.7
12 6 16 ✓ ✗ ✗ 4 last ✓ ✗ ✗ 0.1 - 0 79.3 94.1

(d)
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12 6 16 ✓ ✗ ✗ 8 - ✗ ✗ ✗ - - 0 76.2 92.4
12 6 16 ✓ ✗ ✗ 1 - ✗ ✗ ✗ - - 0 76.3 92.5
12 6 16 ✓ ✗ ✗ 1 - ✗ ✗ ✗ - - 1 76.2 92.4
12 6 16 ✓ ✗ ✗ 2 - ✗ ✗ ✗ - - 0 76.4 93.2
12 6 16 ✓ ✗ ✗ 2 - ✗ ✗ ✗ - - 1 76.4 93.1
12 6 16 ✓ ✗ ✗ 2 - ✗ ✗ ✗ - - 2 76.5 93.1
12 6 16 ✓ ✗ ✗ 4 - ✗ ✗ ✗ - - 0 77.8 93.3
12 6 16 ✓ ✗ ✗ 4 - ✗ ✗ ✗ - - 1 77.8 93.3
12 6 16 ✓ ✗ ✗ 4 - ✗ ✗ ✗ - - 2 77.2 93.2
12 6 16 ✓ ✗ ✗ 4 - ✗ ✗ ✗ - - 3 76.6 92.9
12 6 16 ✓ ✗ ✗ 4 - ✗ ✗ ✗ - - 4 76.2 92.8

(e)

Attn λ

12 6 16 ✓ ✗ ✗ 4 last ✓ ✗ ✗ 0.005 - 0 78.7 93.7
12 6 16 ✓ ✗ ✗ 4 last ✓ ✗ ✗ 0.1 - 0 79.3 94.1
12 6 16 ✓ ✗ ✗ 4 last ✓ ✗ ✗ 0.3 - 0 79.2 94.0
12 6 16 ✓ ✗ ✗ 4 last ✓ ✗ ✗ 0.5 - 0 79.0 93.8
12 6 16 ✓ ✗ ✗ 4 last ✓ ✗ ✗ 5.0 - 0 78.2 93.6

Attn T
12 3 16 ✓ ✗ ✗ 4 last ✓ ✓ ✗ 0.1 10.0 0 78.9 93.8
12 3 16 ✓ ✗ ✗ 4 last ✓ ✓ ✗ 0.1 5.0 0 77.7 93.6
12 3 16 ✓ ✗ ✗ 4 last ✓ ✓ ✗ 0.1 20.0 0 78.3 93.7

(f)

PA 8 3 32 ✓ ✗ ✗ 4 - ✗ ✗ ✗ - - 0 68.6 88.8
Weight by |VALUE| [4] 8 3 32 ✓ ✗ ✗ 4 last ✓ ✓ ✓ 0.1 10.0 0 70.6 90.5

MSE loss [6] 8 3 32 ✓ ✗ ✗ 4 last ✓ ✓ ✓ 0.1 10.0 0 72.9 90.9
AttnDistill 8 3 32 ✓ ✗ ✗ 4 last ✓ ✓ ✓ 0.1 10.0 0 73.8 91.7

Table 10: Full table for our ablation studies.
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6 More visualization of attention maps
Except the Fig.4 in the main paper, here in Fig. 9 and Fig. 10 we also show more visualization
of the attention maps obtained from various knowledge distillation methods (MAE-ViT-S
→ViT-T) on ImageNet-Subset. More attention visualizations with nearly 1000 images (≈ 10
images per class) are in our supplementary file named "attn_vis.zip" with the same layouts.

IMG AGGR head 1 head 2 head 3 head 4 head 5 head 6
Teacher (MAE-ViT-S, 12-Layer, 6-Head, 384-dim, 16-Patch)

CC

AGGR head 1 head 2 head 3
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AGGR head 1 head 2 head 3
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Student (ViT-T, 8-Layer, 3-Head, 192-dim, 32-Patch)

Reg

SimReg OURs

Figure 9: Comparison on attention maps for "n02088238_194.jpg". For the teacher model
ViT-S trained with MAE, we show the original image (IMG), the aggregated attention map
(AGGR) with our AttnDistill and the attention maps for each head. For the student model
ViT-T distilled from the teacher model, we show the aggregated attention map and each head
attention map for each method. The KL distances to the teacher aggregated attention maps
are shown under each method.
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IMG AGGR head 1 head 2 head 3 head 4 head 5 head 6
Teacher (MAE-ViT-S, 12-Layer, 6-Head, 384-dim, 16-Patch)
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AGGR head 1 head 2 head 3
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Student (ViT-T, 8-Layer, 3-Head, 192-dim, 32-Patch)
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Figure 10: Comparison on attention maps for "n02106166_45.jpg". For the teacher model
ViT-S trained with MAE, we show the original image (IMG), the aggregated attention map
(AGGR) with our AttnDistill and the attention maps for each head. For the student model
ViT-T distilled from the teacher model, we show the aggregated attention map and each head
attention map for each method. The KL distances to the teacher aggregated attention maps
are shown under each method.
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IMG AGGR head 1 head 2 head 3 head 4 head 5 head 6
Teacher (MAE-ViT-S, 12-Layer, 6-Head, 384-dim, 16-Patch)
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Student (ViT-T, 8-Layer, 3-Head, 192-dim, 32-Patch)
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Figure 11: Comparison on attention maps "n04310018_78.jpg". For the teacher model
ViT-S trained with MAE, we show the original image (IMG), the aggregated attention map
(AGGR) with our AttnDistill and the attention maps for each head. For the student model
ViT-T distilled from the teacher model, we show the aggregated attention map and each head
attention map for each method. The KL distances to the teacher aggregated attention maps
are shown under each method.
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