|   | 
Details
   web
Records Links
Author Marc Serra; Olivier Penacchio; Robert Benavente; Maria Vanrell edit   pdf
url  doi
isbn  openurl
Title Names and Shades of Color for Intrinsic Image Estimation Type Conference Article
Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
Volume Issue Pages 278-285  
Keywords  
Abstract (down) In the last years, intrinsic image decomposition has gained attention. Most of the state-of-the-art methods are based on the assumption that reflectance changes come along with strong image edges. Recently, user intervention in the recovery problem has proved to be a remarkable source of improvement. In this paper, we propose a novel approach that aims to overcome the shortcomings of pure edge-based methods by introducing strong surface descriptors, such as the color-name descriptor which introduces high-level considerations resembling top-down intervention. We also use a second surface descriptor, termed color-shade, which allows us to include physical considerations derived from the image formation model capturing gradual color surface variations. Both color cues are combined by means of a Markov Random Field. The method is quantitatively tested on the MIT ground truth dataset using different error metrics, achieving state-of-the-art performance.  
Address Providence, Rhode Island  
Corporate Author Thesis  
Publisher IEEE Xplore Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1063-6919 ISBN 978-1-4673-1226-4 Medium  
Area Expedition Conference CVPR  
Notes CIC Approved no  
Call Number Admin @ si @ SPB2012 Serial 2026  
Permanent link to this record
 

 
Author Xavier Otazu; C. Alejandro Parraga; Maria Vanrell edit  url
doi  openurl
Title Towards a unified chromatic inducction model Type Journal Article
Year 2010 Publication Journal of Vision Abbreviated Journal VSS  
Volume 10 Issue 12:5 Pages 1-24  
Keywords Visual system; Color induction; Wavelet transform  
Abstract (down) In a previous work (X. Otazu, M. Vanrell, & C. A. Párraga, 2008b), we showed how several brightness induction effects can be predicted using a simple multiresolution wavelet model (BIWaM). Here we present a new model for chromatic induction processes (termed Chromatic Induction Wavelet Model or CIWaM), which is also implemented on a multiresolution framework and based on similar assumptions related to the spatial frequency and the contrast surround energy of the stimulus. The CIWaM can be interpreted as a very simple extension of the BIWaM to the chromatic channels, which in our case are defined in the MacLeod-Boynton (lsY) color space. This new model allows us to unify both chromatic assimilation and chromatic contrast effects in a single mathematical formulation. The predictions of the CIWaM were tested by means of several color and brightness induction experiments, which showed an acceptable agreement between model predictions and psychophysical data.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number CAT @ cat @ OPV2010 Serial 1450  
Permanent link to this record
 

 
Author Robert Benavente; C. Alejandro Parraga; Maria Vanrell edit  openurl
Title Colour categories boundaries are better defined in contextual conditions Type Journal Article
Year 2009 Publication Perception Abbreviated Journal PER  
Volume 38 Issue Pages 36  
Keywords  
Abstract (down) In a previous experiment [Parraga et al, 2009 Journal of Imaging Science and Technology 53(3)] the boundaries between basic colour categories were measured by asking subjects to categorize colour samples presented in isolation (ie on a dark background) using a YES/NO paradigm. Results showed that some boundaries (eg green – blue) were very diffuse and the subjects' answers presented bimodal distributions, which were attributed to the emergence of non-basic categories in those regions (eg turquoise). To confirm these results we performed a new experiment focussed on the boundaries where bimodal distributions were more evident. In this new experiment rectangular colour samples were presented surrounded by random colour patches to simulate contextual conditions on a calibrated CRT monitor. The names of two neighbouring colours were shown at the bottom of the screen and subjects selected the boundary between these colours by controlling the chromaticity of the central patch, sliding it across these categories' frontier. Results show that in this new experimental paradigm, the formerly uncertain inter-colour category boundaries are better defined and the dispersions (ie the bimodal distributions) that occurred in the previous experiment disappear. These results may provide further support to Berlin and Kay's basic colour terms theory.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number CAT @ cat @ BPV2009 Serial 1192  
Permanent link to this record
 

 
Author Susana Alvarez; Anna Salvatella; Maria Vanrell; Xavier Otazu edit   pdf
url  doi
openurl 
Title Low-dimensional and Comprehensive Color Texture Description Type Journal Article
Year 2012 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
Volume 116 Issue I Pages 54-67  
Keywords  
Abstract (down) Image retrieval can be dealt by combining standard descriptors, such as those of MPEG-7, which are defined independently for each visual cue (e.g. SCD or CLD for Color, HTD for texture or EHD for edges).
A common problem is to combine similarities coming from descriptors representing different concepts in different spaces. In this paper we propose a color texture description that bypasses this problem from its inherent definition. It is based on a low dimensional space with 6 perceptual axes. Texture is described in a 3D space derived from a direct implementation of the original Julesz’s Texton theory and color is described in a 3D perceptual space. This early fusion through the blob concept in these two bounded spaces avoids the problem and allows us to derive a sparse color-texture descriptor that achieves similar performance compared to MPEG-7 in image retrieval. Moreover, our descriptor presents comprehensive qualities since it can also be applied either in segmentation or browsing: (a) a dense image representation is defined from the descriptor showing a reasonable performance in locating texture patterns included in complex images; and (b) a vocabulary of basic terms is derived to build an intermediate level descriptor in natural language improving browsing by bridging semantic gap
 
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1077-3142 ISBN Medium  
Area Expedition Conference  
Notes CAT;CIC Approved no  
Call Number Admin @ si @ ASV2012 Serial 1827  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Joost Van de Weijer; Maria Vanrell edit  url
doi  isbn
openurl 
Title Top-Down Color Attention for Object Recognition Type Conference Article
Year 2009 Publication 12th International Conference on Computer Vision Abbreviated Journal  
Volume Issue Pages 979 - 986  
Keywords  
Abstract (down) Generally the bag-of-words based image representation follows a bottom-up paradigm. The subsequent stages of the process: feature detection, feature description, vocabulary construction and image representation are performed independent of the intentioned object classes to be detected. In such a framework, combining multiple cues such as shape and color often provides below-expected results. This paper presents a novel method for recognizing object categories when using multiple cues by separating the shape and color cue. Color is used to guide attention by means of a top-down category-specific attention map. The color attention map is then further deployed to modulate the shape features by taking more features from regions within an image that are likely to contain an object instance. This procedure leads to a category-specific image histogram representation for each category. Furthermore, we argue that the method combines the advantages of both early and late fusion. We compare our approach with existing methods that combine color and shape cues on three data sets containing varied importance of both cues, namely, Soccer ( color predominance), Flower (color and shape parity), and PASCAL VOC Challenge 2007 (shape predominance). The experiments clearly demonstrate that in all three data sets our proposed framework significantly outperforms the state-of-the-art methods for combining color and shape information.  
Address Kyoto, Japan  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1550-5499 ISBN 978-1-4244-4420-5 Medium  
Area Expedition Conference ICCV  
Notes CIC Approved no  
Call Number CAT @ cat @ SWV2009 Serial 1196  
Permanent link to this record
 

 
Author Javier Vazquez; Maria Vanrell; Ramon Baldrich; Francesc Tous edit  url
doi  openurl
Title Color Constancy by Category Correlation Type Journal Article
Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
Volume 21 Issue 4 Pages 1997-2007  
Keywords  
Abstract (down) Finding color representations which are stable to illuminant changes is still an open problem in computer vision. Until now most approaches have been based on physical constraints or statistical assumptions derived from the scene, while very little attention has been paid to the effects that selected illuminants have
on the final color image representation. The novelty of this work is to propose
perceptual constraints that are computed on the corrected images. We define the
category hypothesis, which weights the set of feasible illuminants according to their ability to map the corrected image onto specific colors. Here we choose these colors as the universal color categories related to basic linguistic terms which have been psychophysically measured. These color categories encode natural color statistics, and their relevance across different cultures is indicated by the fact that they have received a common color name. From this category hypothesis we propose a fast implementation that allows the sampling of a large set of illuminants. Experiments prove that our method rivals current state-of-art performance without the need for training algorithmic parameters. Additionally, the method can be used as a framework to insert top-down information from other sources, thus opening further research directions in solving for color constancy.
 
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1057-7149 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ VVB2012 Serial 1999  
Permanent link to this record
 

 
Author Ivet Rafegas; Javier Vazquez; Robert Benavente; Maria Vanrell; Susana Alvarez edit  url
openurl 
Title Enhancing spatio-chromatic representation with more-than-three color coding for image description Type Journal Article
Year 2017 Publication Journal of the Optical Society of America A Abbreviated Journal JOSA A  
Volume 34 Issue 5 Pages 827-837  
Keywords  
Abstract (down) Extraction of spatio-chromatic features from color images is usually performed independently on each color channel. Usual 3D color spaces, such as RGB, present a high inter-channel correlation for natural images. This correlation can be reduced using color-opponent representations, but the spatial structure of regions with small color differences is not fully captured in two generic Red-Green and Blue-Yellow channels. To overcome these problems, we propose a new color coding that is adapted to the specific content of each image. Our proposal is based on two steps: (a) setting the number of channels to the number of distinctive colors we find in each image (avoiding the problem of channel correlation), and (b) building a channel representation that maximizes contrast differences within each color channel (avoiding the problem of low local contrast). We call this approach more-than-three color coding (MTT) to enhance the fact that the number of channels is adapted to the image content. The higher color complexity an image has, the more channels can be used to represent it. Here we select distinctive colors as the most predominant in the image, which we call color pivots, and we build the new color coding using these color pivots as a basis. To evaluate the proposed approach we measure its efficiency in an image categorization task. We show how a generic descriptor improves its performance at the description level when applied on the MTT coding.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC; 600.087 Approved no  
Call Number Admin @ si @ RVB2017 Serial 2892  
Permanent link to this record
 

 
Author Hassan Ahmed Sial; Ramon Baldrich; Maria Vanrell edit   pdf
url  openurl
Title Deep intrinsic decomposition trained on surreal scenes yet with realistic light effects Type Journal Article
Year 2020 Publication Journal of the Optical Society of America A Abbreviated Journal JOSA A  
Volume 37 Issue 1 Pages 1-15  
Keywords  
Abstract (down) Estimation of intrinsic images still remains a challenging task due to weaknesses of ground-truth datasets, which either are too small or present non-realistic issues. On the other hand, end-to-end deep learning architectures start to achieve interesting results that we believe could be improved if important physical hints were not ignored. In this work, we present a twofold framework: (a) a flexible generation of images overcoming some classical dataset problems such as larger size jointly with coherent lighting appearance; and (b) a flexible architecture tying physical properties through intrinsic losses. Our proposal is versatile, presents low computation time, and achieves state-of-the-art results.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC; 600.140; 600.12; 600.118 Approved no  
Call Number Admin @ si @ SBV2019 Serial 3311  
Permanent link to this record
 

 
Author Robert Benavente; C. Alejandro Parraga; Maria Vanrell edit  url
isbn  openurl
Title La influencia del contexto en la definicion de las fronteras entre las categorias cromaticas Type Conference Article
Year 2010 Publication 9th Congreso Nacional del Color Abbreviated Journal  
Volume Issue Pages 92–95  
Keywords Categorización del color; Apariencia del color; Influencia del contexto; Patrones de Mondrian; Modelos paramétricos  
Abstract (down) En este artículo presentamos los resultados de un experimento de categorización de color en el que las muestras se presentaron sobre un fondo multicolor (Mondrian) para simular los efectos del contexto. Los resultados se comparan con los de un experimento previo que, utilizando un paradigma diferente, determinó las fronteras sin tener en cuenta el contexto. El análisis de los resultados muestra que las fronteras obtenidas con el experimento en contexto presentan menos confusión que las obtenidas en el experimento sin contexto.  
Address Alicante (Spain)  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN 978-84-9717-144-1 Medium  
Area Expedition Conference CNC  
Notes CIC Approved no  
Call Number CAT @ cat @ BPV2010 Serial 1327  
Permanent link to this record
 

 
Author Javier Vazquez; Robert Benavente; Maria Vanrell edit   pdf
url  openurl
Title Naming constraints constancy Type Conference Article
Year 2012 Publication 2nd Joint AVA / BMVA Meeting on Biological and Machine Vision Abbreviated Journal  
Volume Issue Pages  
Keywords  
Abstract (down) Different studies have shown that languages from industrialized cultures
share a set of 11 basic colour terms: red, green, blue, yellow, pink, purple, brown, orange, black, white, and grey (Berlin & Kay, 1969, Basic Color Terms, University of California Press)( Kay & Regier, 2003, PNAS, 100, 9085-9089). Some of these studies have also reported the best representatives or focal values of each colour (Boynton and Olson, 1990, Vision Res. 30,1311–1317), (Sturges and Whitfield, 1995, CRA, 20:6, 364–376). Some further studies have provided us with fuzzy datasets for color naming by asking human observers to rate colours in terms of membership values (Benavente -et al-, 2006, CRA. 31:1, 48–56,). Recently, a computational model based on these human ratings has been developed (Benavente -et al-, 2008, JOSA-A, 25:10, 2582-2593). This computational model follows a fuzzy approach to assign a colour name to a particular RGB value. For example, a pixel with a value (255,0,0) will be named 'red' with membership 1, while a cyan pixel with a RGB value of (0, 200, 200) will be considered to be 0.5 green and 0.5 blue. In this work, we show how this colour naming paradigm can be applied to different computer vision tasks. In particular, we report results in colour constancy (Vazquez-Corral -et al-, 2012, IEEE TIP, in press) showing that the classical constraints on either illumination or surface reflectance can be substituted by
the statistical properties encoded in the colour names. [Supported by projects TIN2010-21771-C02-1, CSD2007-00018].
 
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference AV A  
Notes CIC Approved no  
Call Number Admin @ si @ VBV2012 Serial 2131  
Permanent link to this record
 

 
Author Hassan Ahmed Sial; S. Sancho; Ramon Baldrich; Robert Benavente; Maria Vanrell edit   pdf
url  openurl
Title Color-based data augmentation for Reflectance Estimation Type Conference Article
Year 2018 Publication 26th Color Imaging Conference Abbreviated Journal  
Volume Issue Pages 284-289  
Keywords  
Abstract (down) Deep convolutional architectures have shown to be successful frameworks to solve generic computer vision problems. The estimation of intrinsic reflectance from single image is not a solved problem yet. Encoder-Decoder architectures are a perfect approach for pixel-wise reflectance estimation, although it usually suffers from the lack of large datasets. Lack of data can be partially solved with data augmentation, however usual techniques focus on geometric changes which does not help for reflectance estimation. In this paper we propose a color-based data augmentation technique that extends the training data by increasing the variability of chromaticity. Rotation on the red-green blue-yellow plane of an opponent space enable to increase the training set in a coherent and sound way that improves network generalization capability for reflectance estimation. We perform some experiments on the Sintel dataset showing that our color-based augmentation increase performance and overcomes one of the state-of-the-art methods.  
Address Vancouver; November 2018  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference CIC  
Notes CIC Approved no  
Call Number Admin @ si @ SSB2018a Serial 3129  
Permanent link to this record
 

 
Author Ivet Rafegas; Maria Vanrell edit   pdf
url  doi
openurl 
Title Color encoding in biologically-inspired convolutional neural networks Type Journal Article
Year 2018 Publication Vision Research Abbreviated Journal VR  
Volume 151 Issue Pages 7-17  
Keywords Color coding; Computer vision; Deep learning; Convolutional neural networks  
Abstract (down) Convolutional Neural Networks have been proposed as suitable frameworks to model biological vision. Some of these artificial networks showed representational properties that rival primate performances in object recognition. In this paper we explore how color is encoded in a trained artificial network. It is performed by estimating a color selectivity index for each neuron, which allows us to describe the neuron activity to a color input stimuli. The index allows us to classify whether they are color selective or not and if they are of a single or double color. We have determined that all five convolutional layers of the network have a large number of color selective neurons. Color opponency clearly emerges in the first layer, presenting 4 main axes (Black-White, Red-Cyan, Blue-Yellow and Magenta-Green), but this is reduced and rotated as we go deeper into the network. In layer 2 we find a denser hue sampling of color neurons and opponency is reduced almost to one new main axis, the Bluish-Orangish coinciding with the dataset bias. In layers 3, 4 and 5 color neurons are similar amongst themselves, presenting different type of neurons that detect specific colored objects (e.g., orangish faces), specific surrounds (e.g., blue sky) or specific colored or contrasted object-surround configurations (e.g. blue blob in a green surround). Overall, our work concludes that color and shape representation are successively entangled through all the layers of the studied network, revealing certain parallelisms with the reported evidences in primate brains that can provide useful insight into intermediate hierarchical spatio-chromatic representations.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC; 600.051; 600.087 Approved no  
Call Number Admin @ si @RaV2018 Serial 3114  
Permanent link to this record
 

 
Author Ivet Rafegas; Maria Vanrell edit   pdf
openurl 
Title Color representation in CNNs: parallelisms with biological vision Type Conference Article
Year 2017 Publication ICCV Workshop on Mutual Benefits ofr Cognitive and Computer Vision Abbreviated Journal  
Volume Issue Pages  
Keywords  
Abstract (down) Convolutional Neural Networks (CNNs) trained for object recognition tasks present representational capabilities approaching to primate visual systems [1]. This provides a computational framework to explore how image features
are efficiently represented. Here, we dissect a trained CNN
[2] to study how color is represented. We use a classical methodology used in physiology that is measuring index of selectivity of individual neurons to specific features. We use ImageNet Dataset [20] images and synthetic versions
of them to quantify color tuning properties of artificial neurons to provide a classification of the network population.
We conclude three main levels of color representation showing some parallelisms with biological visual systems: (a) a decomposition in a circular hue space to represent single color regions with a wider hue sampling beyond the first
layer (V2), (b) the emergence of opponent low-dimensional spaces in early stages to represent color edges (V1); and (c) a strong entanglement between color and shape patterns representing object-parts (e.g. wheel of a car), objectshapes (e.g. faces) or object-surrounds configurations (e.g. blue sky surrounding an object) in deeper layers (V4 or IT).
 
Address Venice; Italy; October 2017  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference ICCV-MBCC  
Notes CIC; 600.087; 600.051 Approved no  
Call Number Admin @ si @ RaV2017 Serial 2984  
Permanent link to this record
 

 
Author Javier Vazquez; Maria Vanrell; Robert Benavente edit  openurl
Title Color names as a constraint for Computer Vision problems Type Conference Article
Year 2010 Publication Proceedings of The CREATE 2010 Conference Abbreviated Journal  
Volume Issue Pages 324–328  
Keywords  
Abstract (down) Computer Vision Problems are usually ill-posed. Constraining de gamut of possible solutions is then a necessary step. Many constrains for different problems have been developed during years. In this paper, we present a different way of constraining some of these problems: the use of color names. In particular, we will focus on segmentation, representation ans constancy.  
Address Gjovik (Norway)  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference CREATE  
Notes CIC Approved no  
Call Number CAT @ cat @ VVB2010 Serial 1328  
Permanent link to this record