|
Olivier Penacchio, Xavier Otazu, & Laura Dempere-Marco. (2013). A Neurodynamical Model of Brightness Induction in V1. Plos - PloS ONE, 8(5), e64086.
Abstract: Brightness induction is the modulation of the perceived intensity of an area by the luminance of surrounding areas. Recent neurophysiological evidence suggests that brightness information might be explicitly represented in V1, in contrast to the more common assumption that the striate cortex is an area mostly responsive to sensory information. Here we investigate possible neural mechanisms that offer a plausible explanation for such phenomenon. To this end, a neurodynamical model which is based on neurophysiological evidence and focuses on the part of V1 responsible for contextual influences is presented. The proposed computational model successfully accounts for well known psychophysical effects for static contexts and also for brightness induction in dynamic contexts defined by modulating the luminance of surrounding areas. This work suggests that intra-cortical interactions in V1 could, at least partially, explain brightness induction effects and reveals how a common general architecture may account for several different fundamental processes, such as visual saliency and brightness induction, which emerge early in the visual processing pathway.
|
|
|
David Masip, Michael S. North, Alexander Todorov, & Daniel N. Osherson. (2014). Automated Prediction of Preferences Using Facial Expressions. Plos - PloS one, 9(2), e87434.
Abstract: We introduce a computer vision problem from social cognition, namely, the automated detection of attitudes from a person's spontaneous facial expressions. To illustrate the challenges, we introduce two simple algorithms designed to predict observers’ preferences between images (e.g., of celebrities) based on covert videos of the observers’ faces. The two algorithms are almost as accurate as human judges performing the same task but nonetheless far from perfect. Our approach is to locate facial landmarks, then predict preference on the basis of their temporal dynamics. The database contains 768 videos involving four different kinds of preferences. We make it publically available.
|
|
|
C. Alejandro Parraga, & Arash Akbarinia. (2016). NICE: A Computational Solution to Close the Gap from Colour Perception to Colour Categorization. Plos - PLoS One, 11(3), e0149538.
Abstract: The segmentation of visible electromagnetic radiation into chromatic categories by the human visual system has been extensively studied from a perceptual point of view, resulting in several colour appearance models. However, there is currently a void when it comes to relate these results to the physiological mechanisms that are known to shape the pre-cortical and cortical visual pathway. This work intends to begin to fill this void by proposing a new physiologically plausible model of colour categorization based on Neural Isoresponsive Colour Ellipsoids (NICE) in the cone-contrast space defined by the main directions of the visual signals entering the visual cortex. The model was adjusted to fit psychophysical measures that concentrate on the categorical boundaries and are consistent with the ellipsoidal isoresponse surfaces of visual cortical neurons. By revealing the shape of such categorical colour regions, our measures allow for a more precise and parsimonious description, connecting well-known early visual processing mechanisms to the less understood phenomenon of colour categorization. To test the feasibility of our method we applied it to exemplary images and a popular ground-truth chart obtaining labelling results that are better than those of current state-of-the-art algorithms.
|
|
|
Debora Gil, Carles Sanchez, Agnes Borras, Marta Diez-Ferrer, & Antoni Rosell. (2019). Segmentation of Distal Airways using Structural Analysis. Plos - PloS one, 14(12).
Abstract: Segmentation of airways in Computed Tomography (CT) scans is a must for accurate support of diagnosis and intervention of many pulmonary disorders. In particular, lung cancer diagnosis would benefit from segmentations reaching most distal airways. We present a method that combines descriptors of bronchi local appearance and graph global structural analysis to fine-tune thresholds on the descriptors adapted for each bronchial level. We have compared our method to the top performers of the EXACT09 challenge and to a commercial software for biopsy planning evaluated in an own-collected data-base of high resolution CT scans acquired under different breathing conditions. Results on EXACT09 data show that our method provides a high leakage reduction with minimum loss in airway detection. Results on our data-base show the reliability across varying breathing conditions and a competitive performance for biopsy planning compared to a commercial solution.
|
|
|
Penny Tarling, Mauricio Cantor, Albert Clapes, & Sergio Escalera. (2022). Deep learning with self-supervision and uncertainty regularization to count fish in underwater images. Plos - PloS One, 17(5), e0267759.
Abstract: Effective conservation actions require effective population monitoring. However, accurately counting animals in the wild to inform conservation decision-making is difficult. Monitoring populations through image sampling has made data collection cheaper, wide-reaching and less intrusive but created a need to process and analyse this data efficiently. Counting animals from such data is challenging, particularly when densely packed in noisy images. Attempting this manually is slow and expensive, while traditional computer vision methods are limited in their generalisability. Deep learning is the state-of-the-art method for many computer vision tasks, but it has yet to be properly explored to count animals. To this end, we employ deep learning, with a density-based regression approach, to count fish in low-resolution sonar images. We introduce a large dataset of sonar videos, deployed to record wild Lebranche mullet schools (Mugil liza), with a subset of 500 labelled images. We utilise abundant unlabelled data in a self-supervised task to improve the supervised counting task. For the first time in this context, by introducing uncertainty quantification, we improve model training and provide an accompanying measure of prediction uncertainty for more informed biological decision-making. Finally, we demonstrate the generalisability of our proposed counting framework through testing it on a recent benchmark dataset of high-resolution annotated underwater images from varying habitats (DeepFish). From experiments on both contrasting datasets, we demonstrate our network outperforms the few other deep learning models implemented for solving this task. By providing an open-source framework along with training data, our study puts forth an efficient deep learning template for crowd counting aquatic animals thereby contributing effective methods to assess natural populations from the ever-increasing visual data.
|
|
|
Simone Balocco, O. Basset, G. Courbebaisse, E. Boni, Alejandro F. Frangi, P. Tortoli, et al. (2010). Estimation Of Viscoelastic Properties Of Vessel Walls Using a Computational Model and Doppler Ultrasound. PMB - Physics in Medicine and Biology, 55(12), 3557–3575.
Abstract: Human arteries affected by atherosclerosis are characterized by altered wall viscoelastic properties. The possibility of noninvasively assessing arterial viscoelasticity in vivo would significantly contribute to the early diagnosis and prevention of this disease. This paper presents a noniterative technique to estimate the viscoelastic parameters of a vascular wall Zener model. The approach requires the simultaneous measurement of flow variations and wall displacements, which can be provided by suitable ultrasound Doppler instruments. Viscoelastic parameters are estimated by fitting the theoretical constitutive equations to the experimental measurements using an ARMA parameter approach. The accuracy and sensitivity of the proposed method are tested using reference data generated by numerical simulations of arterial pulsation in which the physiological conditions and the viscoelastic parameters of the model can be suitably varied. The estimated values quantitatively agree with the reference values, showing that the only parameter affected by changing the physiological conditions is viscosity, whose relative error was about 27% even when a poor signal-to-noise ratio is simulated. Finally, the feasibility of the method is illustrated through three measurements made at different flow regimes on a cylindrical vessel phantom, yielding a parameter mean estimation error of 25%.
|
|
|
Hannes Mueller, Andre Groeger, Jonathan Hersh, Andrea Matranga, & Joan Serrat. (2021). Monitoring war destruction from space using machine learning. PNAS - Proceedings of the National Academy of Sciences of the United States of America, 118(23), e2025400118.
Abstract: Existing data on building destruction in conflict zones rely on eyewitness reports or manual detection, which makes it generally scarce, incomplete, and potentially biased. This lack of reliable data imposes severe limitations for media reporting, humanitarian relief efforts, human-rights monitoring, reconstruction initiatives, and academic studies of violent conflict. This article introduces an automated method of measuring destruction in high-resolution satellite images using deep-learning techniques combined with label augmentation and spatial and temporal smoothing, which exploit the underlying spatial and temporal structure of destruction. As a proof of concept, we apply this method to the Syrian civil war and reconstruct the evolution of damage in major cities across the country. Our approach allows generating destruction data with unprecedented scope, resolution, and frequency—and makes use of the ever-higher frequency at which satellite imagery becomes available.
|
|
|
Oriol Pujol, Sergio Escalera, & Petia Radeva. (2008). An Incremental Node Embedding Technique for Error Correcting Output Codes. PR - Pattern Recognition, 713–725.
|
|
|
Jose Antonio Rodriguez, & Florent Perronnin. (2009). Handwritten word-spotting using hidden Markov models and universal vocabularies. PR - Pattern Recognition, 42(9), 2103–2116.
Abstract: Handwritten word-spotting is traditionally viewed as an image matching task between one or multiple query word-images and a set of candidate word-images in a database. This is a typical instance of the query-by-example paradigm. In this article, we introduce a statistical framework for the word-spotting problem which employs hidden Markov models (HMMs) to model keywords and a Gaussian mixture model (GMM) for score normalization. We explore the use of two types of HMMs for the word modeling part: continuous HMMs (C-HMMs) and semi-continuous HMMs (SC-HMMs), i.e. HMMs with a shared set of Gaussians. We show on a challenging multi-writer corpus that the proposed statistical framework is always superior to a traditional matching system which uses dynamic time warping (DTW) for word-image distance computation. A very important finding is that the SC-HMM is superior when labeled training data is scarce—as low as one sample per keyword—thanks to the prior information which can be incorporated in the shared set of Gaussians.
Keywords: Word-spotting; Hidden Markov model; Score normalization; Universal vocabulary; Handwriting recognition
|
|
|
Ignasi Rius, Jordi Gonzalez, Javier Varona, & Xavier Roca. (2009). Action-specific motion prior for efficient bayesian 3D human body tracking. PR - Pattern Recognition, 42(11), 2907–2921.
Abstract: In this paper, we aim to reconstruct the 3D motion parameters of a human body
model from the known 2D positions of a reduced set of joints in the image plane.
Towards this end, an action-specific motion model is trained from a database of real
motion-captured performances. The learnt motion model is used within a particle
filtering framework as a priori knowledge on human motion. First, our dynamic
model guides the particles according to similar situations previously learnt. Then, the solution space is constrained so only feasible human postures are accepted as valid solutions at each time step. As a result, we are able to track the 3D configuration of the full human body from several cycles of walking motion sequences using only the 2D positions of a very reduced set of joints from lateral or frontal viewpoints.
|
|
|
Miquel Ferrer, Ernest Valveny, & F. Serratosa. (2009). Median Graphs: A Genetic Approach based on New Theoretical Properties. PR - Pattern Recognition, 42(9), 2003–2012.
Abstract: Given a set of graphs, the median graph has been theoretically presented as a useful concept to infer a representative of the set. However, the computation of the median graph is a highly complex task and its practical application has been very limited up to now. In this work we present two major contributions. On one side, and from a theoretical point of view, we show new theoretical properties of the median graph. On the other side, using these new properties, we present a new approximate algorithm based on the genetic search, that improves the computation of the median graph. Finally, we perform a set of experiments on real data, where none of the existing algorithms for the median graph computation could be applied up to now due to their computational complexity. With these results, we show how the concept of the median graph can be used in real applications and leaves the box of the only-theoretical concepts, demonstrating, from a practical point of view, that can be a useful tool to represent a set of graphs.
Keywords: Median graph; Genetic search; Maximum common subgraph; Graph matching; Structural pattern recognition
|
|
|
Daniel Ponsa, & Antonio Lopez. (2009). Variance reduction techniques in particle-based visual contour Tracking. PR - Pattern Recognition, 42(11), 2372–2391.
Abstract: This paper presents a comparative study of three different strategies to improve the performance of particle filters, in the context of visual contour tracking: the unscented particle filter, the Rao-Blackwellized particle filter, and the partitioned sampling technique. The tracking problem analyzed is the joint estimation of the global and local transformation of the outline of a given target, represented following the active shape model approach. The main contributions of the paper are the novel adaptations of the considered techniques on this generic problem, and the quantitative assessment of their performance in extensive experimental work done.
Keywords: Contour tracking; Active shape models; Kalman filter; Particle filter; Importance sampling; Unscented particle filter; Rao-Blackwellization; Partitioned sampling
|
|
|
Miquel Ferrer, Ernest Valveny, F. Serratosa, K. Riesen, & Horst Bunke. (2010). Generalized Median Graph Computation by Means of Graph Embedding in Vector Spaces. PR - Pattern Recognition, 43(4), 1642–1655.
Abstract: The median graph has been presented as a useful tool to represent a set of graphs. Nevertheless its computation is very complex and the existing algorithms are restricted to use limited amount of data. In this paper we propose a new approach for the computation of the median graph based on graph embedding. Graphs are embedded into a vector space and the median is computed in the vector domain. We have designed a procedure based on the weighted mean of a pair of graphs to go from the vector domain back to the graph domain in order to obtain a final approximation of the median graph. Experiments on three different databases containing large graphs show that we succeed to compute good approximations of the median graph. We have also applied the median graph to perform some basic classification tasks achieving reasonable good results. These experiments on real data open the door to the application of the median graph to a number of more complex machine learning algorithms where a representative of a set of graphs is needed.
Keywords: Graph matching; Weighted mean of graphs; Median graph; Graph embedding; Vector spaces
|
|
|
Joan Mas, Josep Llados, Gemma Sanchez, & J.A. Jorge. (2010). A syntactic approach based on distortion-tolerant Adjacency Grammars and a spatial-directed parser to interpret sketched diagrams. PR - Pattern Recognition, 43(12), 4148–4164.
Abstract: This paper presents a syntactic approach based on Adjacency Grammars (AG) for sketch diagram modeling and understanding. Diagrams are a combination of graphical symbols arranged according to a set of spatial rules defined by a visual language. AG describe visual shapes by productions defined in terms of terminal and non-terminal symbols (graphical primitives and subshapes), and a set functions describing the spatial arrangements between symbols. Our approach to sketch diagram understanding provides three main contributions. First, since AG are linear grammars, there is a need to define shapes and relations inherently bidimensional using a sequential formalism. Second, our parsing approach uses an indexing structure based on a spatial tessellation. This serves to reduce the search space when finding candidates to produce a valid reduction. This allows order-free parsing of 2D visual sentences while keeping combinatorial explosion in check. Third, working with sketches requires a distortion model to cope with the natural variations of hand drawn strokes. To this end we extended the basic grammar with a distortion measure modeled on the allowable variation on spatial constraints associated with grammar productions. Finally, the paper reports on an experimental framework an interactive system for sketch analysis. User tests performed on two real scenarios show that our approach is usable in interactive settings.
Keywords: Syntactic Pattern Recognition; Symbol recognition; Diagram understanding; Sketched diagrams; Adjacency Grammars; Incremental parsing; Spatial directed parsing
|
|
|
Umapada Pal, Partha Pratim Roy, N. Tripathya, & Josep Llados. (2010). Multi-oriented Bangla and Devnagari text recognition. PR - Pattern Recognition, 43(12), 4124–4136.
Abstract: There are printed complex documents where text lines of a single page may have different orientations or the text lines may be curved in shape. As a result, it is difficult to detect the skew of such documents and hence character segmentation and recognition of such documents are a complex task. In this paper, using background and foreground information we propose a novel scheme towards the recognition of Indian complex documents of Bangla and Devnagari script. In Bangla and Devnagari documents usually characters in a word touch and they form cavity regions. To take care of these cavity regions, background information of such documents is used. Convex hull and water reservoir principle have been applied for this purpose. Here, at first, the characters are segmented from the documents using the background information of the text. Next, individual characters are recognized using rotation invariant features obtained from the foreground part of the characters.
For character segmentation, at first, writing mode of a touching component (word) is detected using water reservoir principle based features. Next, depending on writing mode and the reservoir base-region of the touching component, a set of candidate envelope points is then selected from the contour points of the component. Based on these candidate points, the touching component is finally segmented into individual characters. For recognition of multi-sized/multi-oriented characters the features are computed from different angular information obtained from the external and internal contour pixels of the characters. These angular information are computed in such a way that they do not depend on the size and rotation of the characters. Circular and convex hull rings have been used to divide a character into smaller zones to get zone-wise features for higher recognition results. We combine circular and convex hull features to improve the results and these features are fed to support vector machines (SVM) for recognition. From our experiment we obtained recognition results of 99.18% (98.86%) accuracy when tested on 7515 (7874) Devnagari (Bangla) characters.
|
|