toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author David Vazquez; Javier Marin; Antonio Lopez; Daniel Ponsa; David Geronimo edit   pdf
doi  openurl
  Title Virtual and Real World Adaptation for Pedestrian Detection Type Journal Article
  Year (up) 2014 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 36 Issue 4 Pages 797-809  
  Keywords Domain Adaptation; Pedestrian Detection  
  Abstract Pedestrian detection is of paramount interest for many applications. Most promising detectors rely on discriminatively learnt classifiers, i.e., trained with annotated samples. However, the annotation step is a human intensive and subjective task worth to be minimized. By using virtual worlds we can automatically obtain precise and rich annotations. Thus, we face the question: can a pedestrian appearance model learnt in realistic virtual worlds work successfully for pedestrian detection in realworld images?. Conducted experiments show that virtual-world based training can provide excellent testing accuracy in real world, but it can also suffer the dataset shift problem as real-world based training does. Accordingly, we have designed a domain adaptation framework, V-AYLA, in which we have tested different techniques to collect a few pedestrian samples from the target domain (real world) and combine them with the many examples of the source domain (virtual world) in order to train a domain adapted pedestrian classifier that will operate in the target domain. V-AYLA reports the same detection accuracy than when training with many human-provided pedestrian annotations and testing with real-world images of the same domain. To the best of our knowledge, this is the first work demonstrating adaptation of virtual and real worlds for developing an object detector.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.057; 600.054; 600.076 Approved no  
  Call Number ADAS @ adas @ VML2014 Serial 2275  
Permanent link to this record
 

 
Author Naveen Onkarappa; Angel Sappa edit  doi
openurl 
  Title Speed and Texture: An Empirical Study on Optical-Flow Accuracy in ADAS Scenarios Type Journal Article
  Year (up) 2014 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 15 Issue 1 Pages 136-147  
  Keywords  
  Abstract IF: 3.064
Increasing mobility in everyday life has led to the concern for the safety of automotives and human life. Computer vision has become a valuable tool for developing driver assistance applications that target such a concern. Many such vision-based assisting systems rely on motion estimation, where optical flow has shown its potential. A variational formulation of optical flow that achieves a dense flow field involves a data term and regularization terms. Depending on the image sequence, the regularization has to appropriately be weighted for better accuracy of the flow field. Because a vehicle can be driven in different kinds of environments, roads, and speeds, optical-flow estimation has to be accurately computed in all such scenarios. In this paper, we first present the polar representation of optical flow, which is quite suitable for driving scenarios due to the possibility that it offers to independently update regularization factors in different directional components. Then, we study the influence of vehicle speed and scene texture on optical-flow accuracy. Furthermore, we analyze the relationships of these specific characteristics on a driving scenario (vehicle speed and road texture) with the regularization weights in optical flow for better accuracy. As required by the work in this paper, we have generated several synthetic sequences along with ground-truth flow fields.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1524-9050 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ OnS2014a Serial 2386  
Permanent link to this record
 

 
Author Javier Marin; David Vazquez; Antonio Lopez; Jaume Amores; Ludmila I. Kuncheva edit   pdf
url  doi
openurl 
  Title Occlusion handling via random subspace classifiers for human detection Type Journal Article
  Year (up) 2014 Publication IEEE Transactions on Systems, Man, and Cybernetics (Part B) Abbreviated Journal TSMCB  
  Volume 44 Issue 3 Pages 342-354  
  Keywords Pedestriand Detection; occlusion handling  
  Abstract This paper describes a general method to address partial occlusions for human detection in still images. The Random Subspace Method (RSM) is chosen for building a classifier ensemble robust against partial occlusions. The component classifiers are chosen on the basis of their individual and combined performance. The main contribution of this work lies in our approach’s capability to improve the detection rate when partial occlusions are present without compromising the detection performance on non occluded data. In contrast to many recent approaches, we propose a method which does not require manual labelling of body parts, defining any semantic spatial components, or using additional data coming from motion or stereo. Moreover, the method can be easily extended to other object classes. The experiments are performed on three large datasets: the INRIA person dataset, the Daimler Multicue dataset, and a new challenging dataset, called PobleSec, in which a considerable number of targets are partially occluded. The different approaches are evaluated at the classification and detection levels for both partially occluded and non-occluded data. The experimental results show that our detector outperforms state-of-the-art approaches in the presence of partial occlusions, while offering performance and reliability similar to those of the holistic approach on non-occluded data. The datasets used in our experiments have been made publicly available for benchmarking purposes  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-2267 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 605.203; 600.057; 600.054; 601.042; 601.187; 600.076 Approved no  
  Call Number ADAS @ adas @ MVL2014 Serial 2213  
Permanent link to this record
 

 
Author Jiaolong Xu; David Vazquez; Antonio Lopez; Javier Marin; Daniel Ponsa edit   pdf
doi  isbn
openurl 
  Title Learning a Part-based Pedestrian Detector in Virtual World Type Journal Article
  Year (up) 2014 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 15 Issue 5 Pages 2121-2131  
  Keywords Domain Adaptation; Pedestrian Detection; Virtual Worlds  
  Abstract Detecting pedestrians with on-board vision systems is of paramount interest for assisting drivers to prevent vehicle-to-pedestrian accidents. The core of a pedestrian detector is its classification module, which aims at deciding if a given image window contains a pedestrian. Given the difficulty of this task, many classifiers have been proposed during the last fifteen years. Among them, the so-called (deformable) part-based classifiers including multi-view modeling are usually top ranked in accuracy. Training such classifiers is not trivial since a proper aspect clustering and spatial part alignment of the pedestrian training samples are crucial for obtaining an accurate classifier. In this paper, first we perform automatic aspect clustering and part alignment by using virtual-world pedestrians, i.e., human annotations are not required. Second, we use a mixture-of-parts approach that allows part sharing among different aspects. Third, these proposals are integrated in a learning framework which also allows to incorporate real-world training data to perform domain adaptation between virtual- and real-world cameras. Overall, the obtained results on four popular on-board datasets show that our proposal clearly outperforms the state-of-the-art deformable part-based detector known as latent SVM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1931-0587 ISBN 978-1-4673-2754-1 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number ADAS @ adas @ XVL2014 Serial 2433  
Permanent link to this record
 

 
Author P. Ricaurte ; C. Chilan; Cristhian A. Aguilera-Carrasco; Boris X. Vintimilla; Angel Sappa edit  doi
openurl 
  Title Feature Point Descriptors: Infrared and Visible Spectra Type Journal Article
  Year (up) 2014 Publication Sensors Abbreviated Journal SENS  
  Volume 14 Issue 2 Pages 3690-3701  
  Keywords  
  Abstract This manuscript evaluates the behavior of classical feature point descriptors when they are used in images from long-wave infrared spectral band and compare them with the results obtained in the visible spectrum. Robustness to changes in rotation, scaling, blur, and additive noise are analyzed using a state of the art framework. Experimental results using a cross-spectral outdoor image data set are presented and conclusions from these experiments are given.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS;600.055; 600.076 Approved no  
  Call Number Admin @ si @ RCA2014a Serial 2474  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: