toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Zhijie Fang; Antonio Lopez edit   pdf
url  doi
openurl 
  Title Intention Recognition of Pedestrians and Cyclists by 2D Pose Estimation Type Journal Article
  Year 2019 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume (down) 21 Issue 11 Pages 4773 - 4783  
  Keywords  
  Abstract Anticipating the intentions of vulnerable road users (VRUs) such as pedestrians and cyclists is critical for performing safe and comfortable driving maneuvers. This is the case for human driving and, thus, should be taken into account by systems providing any level of driving assistance, from advanced driver assistant systems (ADAS) to fully autonomous vehicles (AVs). In this paper, we show how the latest advances on monocular vision-based human pose estimation, i.e. those relying on deep Convolutional Neural Networks (CNNs), enable to recognize the intentions of such VRUs. In the case of cyclists, we assume that they follow traffic rules to indicate future maneuvers with arm signals. In the case of pedestrians, no indications can be assumed. Instead, we hypothesize that the walking pattern of a pedestrian allows to determine if he/she has the intention of crossing the road in the path of the ego-vehicle, so that the ego-vehicle must maneuver accordingly (e.g. slowing down or stopping). In this paper, we show how the same methodology can be used for recognizing pedestrians and cyclists' intentions. For pedestrians, we perform experiments on the JAAD dataset. For cyclists, we did not found an analogous dataset, thus, we created our own one by acquiring and annotating videos which we share with the research community. Overall, the proposed pipeline provides new state-of-the-art results on the intention recognition of VRUs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ FaL2019 Serial 3305  
Permanent link to this record
 

 
Author Jose Luis Gomez; Gabriel Villalonga; Antonio Lopez edit   pdf
url  openurl
  Title Co-Training for Deep Object Detection: Comparing Single-Modal and Multi-Modal Approaches Type Journal Article
  Year 2021 Publication Sensors Abbreviated Journal SENS  
  Volume (down) 21 Issue 9 Pages 3185  
  Keywords co-training; multi-modality; vision-based object detection; ADAS; self-driving  
  Abstract Top-performing computer vision models are powered by convolutional neural networks (CNNs). Training an accurate CNN highly depends on both the raw sensor data and their associated ground truth (GT). Collecting such GT is usually done through human labeling, which is time-consuming and does not scale as we wish. This data-labeling bottleneck may be intensified due to domain shifts among image sensors, which could force per-sensor data labeling. In this paper, we focus on the use of co-training, a semi-supervised learning (SSL) method, for obtaining self-labeled object bounding boxes (BBs), i.e., the GT to train deep object detectors. In particular, we assess the goodness of multi-modal co-training by relying on two different views of an image, namely, appearance (RGB) and estimated depth (D). Moreover, we compare appearance-based single-modal co-training with multi-modal. Our results suggest that in a standard SSL setting (no domain shift, a few human-labeled data) and under virtual-to-real domain shift (many virtual-world labeled data, no human-labeled data) multi-modal co-training outperforms single-modal. In the latter case, by performing GAN-based domain translation both co-training modalities are on par, at least when using an off-the-shelf depth estimation model not specifically trained on the translated images.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ GVL2021 Serial 3562  
Permanent link to this record
 

 
Author Ferran Diego; Daniel Ponsa; Joan Serrat; Antonio Lopez edit   pdf
openurl 
  Title Video Alignment for Change Detection Type Journal Article
  Year 2011 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume (down) 20 Issue 7 Pages 1858-1869  
  Keywords video alignment  
  Abstract In this work, we address the problem of aligning two video sequences. Such alignment refers to synchronization, i.e., the establishment of temporal correspondence between frames of the first and second video, followed by spatial registration of all the temporally corresponding frames. Video synchronization and alignment have been attempted before, but most often in the relatively simple cases of fixed or rigidly attached cameras and simultaneous acquisition. In addition, restrictive assumptions have been applied, including linear time correspondence or the knowledge of the complete trajectories of corresponding scene points; to some extent, these assumptions limit the practical applicability of any solutions developed. We intend to solve the more general problem of aligning video sequences recorded by independently moving cameras that follow similar trajectories, based only on the fusion of image intensity and GPS information. The novelty of our approach is to pose the synchronization as a MAP inference problem on a Bayesian network including the observations from these two sensor types, which have been proved complementary. Alignment results are presented in the context of videos recorded from vehicles driving along the same track at different times, for different road types. In addition, we explore two applications of the proposed video alignment method, both based on change detection between aligned videos. One is the detection of vehicles, which could be of use in ADAS. The other is online difference spotting videos of surveillance rounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; IF Approved no  
  Call Number DPS 2011; ADAS @ adas @ dps2011 Serial 1705  
Permanent link to this record
 

 
Author Gabriel Villalonga; Joost Van de Weijer; Antonio Lopez edit  url
doi  openurl
  Title Recognizing new classes with synthetic data in the loop: application to traffic sign recognition Type Journal Article
  Year 2020 Publication Sensors Abbreviated Journal SENS  
  Volume (down) 20 Issue 3 Pages 583  
  Keywords  
  Abstract On-board vision systems may need to increase the number of classes that can be recognized in a relatively short period. For instance, a traffic sign recognition system may suddenly be required to recognize new signs. Since collecting and annotating samples of such new classes may need more time than we wish, especially for uncommon signs, we propose a method to generate these samples by combining synthetic images and Generative Adversarial Network (GAN) technology. In particular, the GAN is trained on synthetic and real-world samples from known classes to perform synthetic-to-real domain adaptation, but applied to synthetic samples of the new classes. Using the Tsinghua dataset with a synthetic counterpart, SYNTHIA-TS, we have run an extensive set of experiments. The results show that the proposed method is indeed effective, provided that we use a proper Convolutional Neural Network (CNN) to perform the traffic sign recognition (classification) task as well as a proper GAN to transform the synthetic images. Here, a ResNet101-based classifier and domain adaptation based on CycleGAN performed extremely well for a ratio∼ 1/4 for new/known classes; even for more challenging ratios such as∼ 4/1, the results are also very positive.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; ADAS; 600.118; 600.120 Approved no  
  Call Number Admin @ si @ VWL2020 Serial 3405  
Permanent link to this record
 

 
Author Fadi Dornaika; Angel Sappa edit  openurl
  Title Evaluation of an Appearance-based 3D Face Tracker using Dense 3D Data Type Journal
  Year 2008 Publication Machine Vision and Applications Abbreviated Journal  
  Volume (down) 19 Issue 5-6 Pages 427–441  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ DoS2008b Serial 1018  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: