toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Sergio Escalera; Oriol Pujol; Petia Radeva edit  doi
openurl 
  Title Traffic sign recognition system with β -correction Type Journal Article
  Year 2010 Publication Machine Vision and Applications Abbreviated Journal MVA  
  Volume (up) 21 Issue 2 Pages 99–111  
  Keywords  
  Abstract Traffic sign classification represents a classical application of multi-object recognition processing in uncontrolled adverse environments. Lack of visibility, illumination changes, and partial occlusions are just a few problems. In this paper, we introduce a novel system for multi-class classification of traffic signs based on error correcting output codes (ECOC). ECOC is based on an ensemble of binary classifiers that are trained on bi-partition of classes. We classify a wide set of traffic signs types using robust error correcting codings. Moreover, we introduce the novel β-correction decoding strategy that outperforms the state-of-the-art decoding techniques, classifying a high number of classes with great success.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0932-8092 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HUPBA Approved no  
  Call Number BCNPCL @ bcnpcl @ EPR2010a Serial 1276  
Permanent link to this record
 

 
Author Mohammad Naser Sabet; Pau Buch Cardona; Egils Avots; Kamal Nasrollahi; Sergio Escalera; Thomas B. Moeslund; Gholamreza Anbarjafari edit  url
doi  openurl
  Title Privacy-Constrained Biometric System for Non-cooperative Users Type Journal Article
  Year 2019 Publication Entropy Abbreviated Journal ENTROPY  
  Volume (up) 21 Issue 11 Pages 1033  
  Keywords biometric recognition; multimodal-based human identification; privacy; deep learning  
  Abstract With the consolidation of the new data protection regulation paradigm for each individual within the European Union (EU), major biometric technologies are now confronted with many concerns related to user privacy in biometric deployments. When individual biometrics are disclosed, the sensitive information about his/her personal data such as financial or health are at high risk of being misused or compromised. This issue can be escalated considerably over scenarios of non-cooperative users, such as elderly people residing in care homes, with their inability to interact conveniently and securely with the biometric system. The primary goal of this study is to design a novel database to investigate the problem of automatic people recognition under privacy constraints. To do so, the collected data-set contains the subject’s hand and foot traits and excludes the face biometrics of individuals in order to protect their privacy. We carried out extensive simulations using different baseline methods, including deep learning. Simulation results show that, with the spatial features extracted from the subject sequence in both individual hand or foot videos, state-of-the-art deep models provide promising recognition performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no proj Approved no  
  Call Number Admin @ si @ NBA2019 Serial 3313  
Permanent link to this record
 

 
Author Ikechukwu Ofodile; Ahmed Helmi; Albert Clapes; Egils Avots; Kerttu Maria Peensoo; Sandhra Mirella Valdma; Andreas Valdmann; Heli Valtna Lukner; Sergey Omelkov; Sergio Escalera; Cagri Ozcinar; Gholamreza Anbarjafari edit  url
doi  openurl
  Title Action recognition using single-pixel time-of-flight detection Type Journal Article
  Year 2019 Publication Entropy Abbreviated Journal ENTROPY  
  Volume (up) 21 Issue 4 Pages 414  
  Keywords single pixel single photon image acquisition; time-of-flight; action recognition  
  Abstract Action recognition is a challenging task that plays an important role in many robotic systems, which highly depend on visual input feeds. However, due to privacy concerns, it is important to find a method which can recognise actions without using visual feed. In this paper, we propose a concept for detecting actions while preserving the test subject’s privacy. Our proposed method relies only on recording the temporal evolution of light pulses scattered back from the scene.
Such data trace to record one action contains a sequence of one-dimensional arrays of voltage values acquired by a single-pixel detector at 1 GHz repetition rate. Information about both the distance to the object and its shape are embedded in the traces. We apply machine learning in the form of recurrent neural networks for data analysis and demonstrate successful action recognition. The experimental results show that our proposed method could achieve on average 96.47% accuracy on the actions walking forward, walking backwards, sitting down, standing up and waving hand, using recurrent
neural network.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no proj Approved no  
  Call Number Admin @ si @ OHC2019 Serial 3319  
Permanent link to this record
 

 
Author Clementine Decamps; Alexis Arnaud; Florent Petitprez; Mira Ayadi; Aurelia Baures; Lucile Armenoult; Sergio Escalera; Isabelle Guyon; Remy Nicolle; Richard Tomasini; Aurelien de Reynies; Jerome Cros; Yuna Blum; Magali Richard edit   pdf
url  openurl
  Title DECONbench: a benchmarking platform dedicated to deconvolution methods for tumor heterogeneity quantification Type Journal Article
  Year 2021 Publication BMC Bioinformatics Abbreviated Journal  
  Volume (up) 22 Issue Pages 473  
  Keywords  
  Abstract Quantification of tumor heterogeneity is essential to better understand cancer progression and to adapt therapeutic treatments to patient specificities. Bioinformatic tools to assess the different cell populations from single-omic datasets as bulk transcriptome or methylome samples have been recently developed, including reference-based and reference-free methods. Improved methods using multi-omic datasets are yet to be developed in the future and the community would need systematic tools to perform a comparative evaluation of these algorithms on controlled data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ DAP2021 Serial 3650  
Permanent link to this record
 

 
Author Oriol Pujol; Debora Gil; Petia Radeva edit   pdf
doi  openurl
  Title Fundamentals of Stop and Go active models Type Journal Article
  Year 2005 Publication Image and Vision Computing Abbreviated Journal  
  Volume (up) 23 Issue 8 Pages 681-691  
  Keywords Deformable models; Geodesic snakes; Region-based segmentation  
  Abstract An efficient snake formulation should conform to the idea of picking the smoothest curve among all the shapes approximating an object of interest. In current geodesic snakes, the regularizing curvature also affects the convergence stage, hindering the latter at concave regions. In the present work, we make use of characteristic functions to define a novel geodesic formulation that decouples regularity and convergence. This term decoupling endows the snake with higher adaptability to non-convex shapes. Convergence is ensured by splitting the definition of the external force into an attractive vector field and a repulsive one. In our paper, we propose to use likelihood maps as approximation of characteristic functions of object appearance. The better efficiency and accuracy of our decoupled scheme are illustrated in the particular case of feature space-based segmentation.  
  Address  
  Corporate Author Thesis  
  Publisher Butterworth-Heinemann Place of Publication Newton, MA, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0262-8856 ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB;HuPBA Approved no  
  Call Number IAM @ iam @ PGR2005 Serial 1629  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: