toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Laura Igual; Agata Lapedriza; Ricard Borras edit   pdf
doi  openurl
  Title Robust Gait-Based Gender Classification using Depth Cameras Type Journal Article
  Year 2013 Publication EURASIP Journal on Advances in Signal Processing Abbreviated Journal EURASIPJ  
  Volume (up) 37 Issue 1 Pages 72-80  
  Keywords  
  Abstract This article presents a new approach for gait-based gender recognition using depth cameras, that can run in real time. The main contribution of this study is a new fast feature extraction strategy that uses the 3D point cloud obtained from the frames in a gait cycle. For each frame, these points are aligned according to their centroid and grouped. After that, they are projected into their PCA plane, obtaining a representation of the cycle particularly robust against view changes. Then, final discriminative features are computed by first making a histogram of the projected points and then using linear discriminant analysis. To test the method we have used the DGait database, which is currently the only publicly available database for gait analysis that includes depth information. We have performed experiments on manually labeled cycles and over whole video sequences, and the results show that our method improves the accuracy significantly, compared with state-of-the-art systems which do not use depth information. Furthermore, our approach is insensitive to illumination changes, given that it discards the RGB information. That makes the method especially suitable for real applications, as illustrated in the last part of the experiments section.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; OR;MV Approved no  
  Call Number Admin @ si @ ILB2013 Serial 2144  
Permanent link to this record
 

 
Author Michal Drozdzal; Santiago Segui; Carolina Malagelada; Fernando Azpiroz; Petia Radeva edit   pdf
doi  openurl
  Title Adaptable image cuts for motility inspection using WCE Type Journal Article
  Year 2013 Publication Computerized Medical Imaging and Graphics Abbreviated Journal CMIG  
  Volume (up) 37 Issue 1 Pages 72-80  
  Keywords  
  Abstract The Wireless Capsule Endoscopy (WCE) technology allows the visualization of the whole small intestine tract. Since the capsule is freely moving, mainly by the means of peristalsis, the data acquired during the study gives a lot of information about the intestinal motility. However, due to: (1) huge amount of frames, (2) complex intestinal scene appearance and (3) intestinal dynamics that make difficult the visualization of the small intestine physiological phenomena, the analysis of the WCE data requires computer-aided systems to speed up the analysis. In this paper, we propose an efficient algorithm for building a novel representation of the WCE video data, optimal for motility analysis and inspection. The algorithm transforms the 3D video data into 2D longitudinal view by choosing the most informative, from the intestinal motility point of view, part of each frame. This step maximizes the lumen visibility in its longitudinal extension. The task of finding “the best longitudinal view” has been defined as a cost function optimization problem which global minimum is obtained by using Dynamic Programming. Validation on both synthetic data and WCE data shows that the adaptive longitudinal view is a good alternative to the traditional motility analysis done by video analysis. The proposed novel data representation a new, holistic insight into the small intestine motility, allowing to easily define and analyze motility events that are difficult to spot by analyzing WCE video. Moreover, the visual inspection of small intestine motility is 4 times faster then by means of video skimming of the WCE.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; OR; 600.046; 605.203 Approved no  
  Call Number Admin @ si @ DSM2012 Serial 2151  
Permanent link to this record
 

 
Author Adriana Romero; Petia Radeva; Carlo Gatta edit  doi
openurl 
  Title Meta-parameter free unsupervised sparse feature learning Type Journal Article
  Year 2015 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume (up) 37 Issue 8 Pages 1716-1722  
  Keywords  
  Abstract We propose a meta-parameter free, off-the-shelf, simple and fast unsupervised feature learning algorithm, which exploits a new way of optimizing for sparsity. Experiments on CIFAR-10, STL- 10 and UCMerced show that the method achieves the state-of-theart performance, providing discriminative features that generalize well.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; 600.068; 600.079; 601.160 Approved no  
  Call Number Admin @ si @ RRG2014b Serial 2594  
Permanent link to this record
 

 
Author Simone Balocco; Carlo Gatta; Francesco Ciompi; A. Wahle; Petia Radeva; S. Carlier; G. Unal; E. Sanidas; F. Mauri; X. Carillo; T. Kovarnik; C. Wang; H. Chen; T. P. Exarchos; D. I. Fotiadis; F. Destrempes; G. Cloutier; Oriol Pujol; Marina Alberti; E. G. Mendizabal-Ruiz; M. Rivera; T. Aksoy; R. W. Downe; I. A. Kakadiaris edit   pdf
doi  openurl
  Title Standardized evaluation methodology and reference database for evaluating IVUS image segmentation Type Journal Article
  Year 2014 Publication Computerized Medical Imaging and Graphics Abbreviated Journal CMIG  
  Volume (up) 38 Issue 2 Pages 70-90  
  Keywords IVUS (intravascular ultrasound); Evaluation framework; Algorithm comparison; Image segmentation  
  Abstract This paper describes an evaluation framework that allows a standardized and quantitative comparison of IVUS lumen and media segmentation algorithms. This framework has been introduced at the MICCAI 2011 Computing and Visualization for (Intra)Vascular Imaging (CVII) workshop, comparing the results of eight teams that participated.
We describe the available data-base comprising of multi-center, multi-vendor and multi-frequency IVUS datasets, their acquisition, the creation of the reference standard and the evaluation measures. The approaches address segmentation of the lumen, the media, or both borders; semi- or fully-automatic operation; and 2-D vs. 3-D methodology. Three performance measures for quantitative analysis have
been proposed. The results of the evaluation indicate that segmentation of the vessel lumen and media is possible with an accuracy that is comparable to manual annotation when semi-automatic methods are used, as well as encouraging results can be obtained also in case of fully-automatic segmentation. The analysis performed in this paper also highlights the challenges in IVUS segmentation that remains to be
solved.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; LAMP; HuPBA; 600.046; 600.063; 600.079 Approved no  
  Call Number Admin @ si @ BGC2013 Serial 2314  
Permanent link to this record
 

 
Author Simeon Petkov; Xavier Carrillo; Petia Radeva; Carlo Gatta edit   pdf
doi  openurl
  Title Diaphragm border detection in coronary X-ray angiographies: New method and applications Type Journal Article
  Year 2014 Publication Computerized Medical Imaging and Graphics Abbreviated Journal CMIG  
  Volume (up) 38 Issue 4 Pages 296-305  
  Keywords  
  Abstract X-ray angiography is widely used in cardiac disease diagnosis during or prior to intravascular interventions. The diaphragm motion and the heart beating induce gray-level changes, which are one of the main obstacles in quantitative analysis of myocardial perfusion. In this paper we focus on detecting the diaphragm border in both single images or whole X-ray angiography sequences. We show that the proposed method outperforms state of the art approaches. We extend a previous publicly available data set, adding new ground truth data. We also compose another set of more challenging images, thus having two separate data sets of increasing difficulty. Finally, we show three applications of our method: (1) a strategy to reduce false positives in vessel enhanced images; (2) a digital diaphragm removal algorithm; (3) an improvement in Myocardial Blush Grade semi-automatic estimation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; LAMP; 600.079 Approved no  
  Call Number Admin @ si @ PCR2014 Serial 2468  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: