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1Dept. Matemàtica Aplicada i Anàlisis, Universitat de Barcelona, Barcelona, Spain
2Computer Vision Center (CVC), Universitat Autònoma de Barcelona, Barcelona, Spain
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Abstract

The Wireless Capsule Endoscopy (WCE) technology allows the visualization
of the whole small intestine tract. Since the capsule is freely moving, mainly
by the means of peristalsis, the data acquired during the study gives a lot of
information about the intestinal motility. However, due to: 1) huge amount
of frames, 2) complex intestinal scene appearance and 3) intestinal dynam-
ics that make difficult the visualization of the small intestine physiological
phenomena, the analysis of the WCE data requires computer-aided systems
to speed up the analysis. In this paper, we propose an efficient algorithm for
building a novel representation of the WCE video data, optimal for motility
analysis and inspection. The algorithm transforms the 3D video data into
2D longitudinal view by choosing the most informative, from the intestinal
motility point of view, part of each frame. This step maximizes the lumen
visibility in its longitudinal extension. The task of finding ”the best longitu-
dinal view” has been defined as a cost function optimization problem which
global minimum is obtained by using Dynamic Programming. Validation
on both synthetic data and WCE data shows that the adaptive longitudinal
view is a good alternative to the traditional motility analysis done by video
analysis. The proposed novel data representation a new, holistic insight into
the small intestine motility, allowing to easily define and analyze motility
events that are difficult to spot by analyzing WCE video. Moreover, the
visual inspection of small intestine motility is 4 times faster then by means
of video skimming of the WCE.

Preprint submitted to Computerized Medical Imaging and Graphics September 21, 2012



Keywords: Intestinal motility visualization, Wireless Capsule Endoscopy,
Dynamic Programming

1. Introduction

Small bowel (also called small intestine) is a part of Gastro-Intestinal
(GI) tract connecting stomach with large intestine. The length of the small
intestine in an adult human is variable and depending on the conditions can
measure from 3 to 8 meters. The main function of the small bowel is the
digestion and absorbtion of nutrients and minerals found in the food. In
order to do so, the small intestine pushes the food through by means of a
physiological mechanism called motility. In general, the intestinal motility
can be divided into two categories [1]: 1) Peristalsis - synchronized movement
of the intestinal wall responsible for moving the food in one direction. 2)
Independent contractions - unsynchronized movement of the intestinal wall
where the muscles squeeze more or less independently of each other; this has
the effect of mixing the contents but not moving them up or down.

The accurate assessment of small bowel motility constitutes one of the
most relevant issues in gastroenterology. Intestinal motility dysfunction ap-
pears when the organ losses its ability to coordinate muscular activity, man-
ifesting the abnormal contractile activity (e.g. spasms or intestinal paraly-
sis) [2]. In a broad sense, any alteration in the transit of foods and secretions
into the small intestine tube may be considered a motility disorder1 [2].

Currently, the main source of information, and the only one which leads
to a diagnosis of small intestine motility disorders is manometry [3]. The
diagnosis is based on the change of intestinal wall pressure in a fixed part
of the small intestine. However, this technique has several drawbacks: 1) it
is highly invasive causing discomfort to the patient; 2) it does not offer the
visualization of the small intestine; 3) only a portion of the small bowel can
be evaluated and 4) the performance of this test is limited to referral centers
around the world due to its complexity and the difficulty in the interpretation
of the results.

A significant technical breakthrough in GI tract analysis was achieved in
2000 when Wireless Capsule Endoscopy (WCE) was presented [4]. From the

1It is important to note that the motility dysfunctions are just one part of all digestive
problems (like: bleeding, polyps or tumors)
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Figure 1: Rapid Reader interface by GivenImaging [5]. The interface presents: (up) video
filed presenting frame view, (bottom-left) an approximation of the capsule position inside
the GI tract and (bottom-right) color bar representing the whole video, each element in
the stripe represents a mean color intensity in one-minute frame period.

first moment, the medical community received WCE with high enthusiasm
since it allowed to visualize the intestine content, shape and function. Thus,
the device has expanded the diagnostic capabilities of small bowel based on
the view of the whole organ. It contains a camera and a full electronic set
which allows the radio frequency emission of a video movie in real time,
acquiring 2 frames per second. The video, showing the whole trip of the pill
along the GI tract, is stored into an external hard drive which is carried by
the patient. The videos can have a duration from 1h up to 8h, what means
that the capsule captures a total of 7200 up to 60000 images. The video can
be visualized by using the software provided by the capsule manufacture.
The software interface for the analysis of WCE data is shown in Fig. 1,
where three types of information are presented: 1) video filed presenting
frame view (Fig. 1 - top), 2) an approximation of the capsule position inside
the GI tract (Fig. 1 - bottom left) and 3) a color bar representing the whole
video, where each column in the stripe represents a mean color intensity in
one-minute frame period (Fig. 1 - bottom right).

The WCE videos contains very valious information about small intestine
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Figure 2: Different views that can be obtained from the WCE video, from left to right: 1)
single frame view, 2) video view and 3) longitudinal view of adaptive cuts.

(a) (b)

Figure 3: a) Scheme representing possible camera movements. b) Different frames acquired
by the WCE capsule, first row presents different lumen position due to camera/intestine
movement, second row presents (from left to right) two examples of intestinal wall and
four examples of intestinal content.

and its motility. Using WCE signal, two types of view for data analysis can
be constructed: 1) frame view and 2) longitudinal view. The frame view
gives information about a slice of intestine (e.g. lumen/wall appearance, see
Fig. 2(left)). While the longitudinal view, usually perpendicular to the in-
testinal tube, shows the desired segment of the video (e.g. lumen/wall change
in time - motility, see Fig. 2(right)). One way of obtaining longitudinal view
is by ”cutting”2 a line of pixels in the sequence of frames. Note that these
cuts do not have to be fixed at the same angle/position, they can adapt to
the lumen position (e. g. compensating in a way the camera rotation).

2Throughout the paper we will refer with the word ”cut” to a straight line of pixels
that passes through the center of the frame (diameter)
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Figure 4: Some examples of intestinal events. From the top to the bottom: 1) contraction
- movement of intestinal wall/lumen, 2) static - paralyzed intestine, 3) tunnel - paralyzed
intestine with open lumen and 4) turbid - lumen/wall occluded by intestinal content.

Longitudinal view represents substantial benefit in analyzing the intesti-
nal motility by using WCE, the following characteristics should be consid-
ered:

• Complex appearance of intestinal events: The camera is freely
moving inside the intestine (upwards, backwards and with respect to
all three rotational axis, (see scheme represented on Fig. 3(a)). The
capsule is traveling through the small intestine (from the beginning of
small intestine - source, to the end of small intestine - sink) by means
of: a) the small intestine motor activity and b) the gravity. These
are the only two factors that control the capsule movement, velocity
and direction. Generally, the capsule moves forward into the sink, but
it is also possible that, for some period of time, the capsule travels
backward. Hence, it is very difficult (or even impossible) to determine
the exact capsule position or orientation. The image from WCE can
show the lumen, whole or only a part of it, or the intestinal wall.
Moreover, often the field of view of the WCE is partially or completely
occluded by intestinal content (intestinal juices and food in digestion,
see Fig. 3(b)).

• Complex interpretation of intestinal events: The intestinal move-
ment can be characterized into four categories of events: 1) ”contrac-
tion” - movement of intestinal wall/lumen, 2) ”static” - paralyzed in-
testine with closed lumen, 3) ”tunnel” - paralyzed intestine with open
lumen and 4) ”turbid” - lumen/wall occluded by intestinal content.
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Fig. 4 presents some examples of intestinal events seen by the WCE
capsule. As it can be observed, the contraction pattern is visible as the
open-closed-open lumen pattern. When no movement of intestinal wall
(and lumen) is visible, the intestine is not moving and the capsule is
”paralyzed” inside the intestine. When the intestine is paralyzed and
the lumen is opened then a tunnel sequence is seen. Although the im-
portance of these events in motility disorders diagnosis has been shown
([6], [7]), the exact medical importance of each of the event and the
relations between them is still an open issue.

• Large number of images: Having available significant amount of
data allows detailed description of physiological events. Meanwhile, a
huge amount of the data (up to 60000 frames) requires a long time (up
to several hours) for video visualization and for diagnosing a study by
the physician.

The problem of manual inspection of the high amount of intestinal images
has attracted the attention of researchers from medical imaging community.
The main effort has been put on the lesions detection. From the variety of the
work dealing with the problem of lesions detection and characterization, we
can distinguish, to list just a few: 1) polyp detection [8], [9], 2) bleeding [10],
[11], [12], 3) abnormal regions (tumors) [13], 4) ulcers [14] and 5) general
pathologies [15], [16], [17].

In the area of intestinal motility some work on detection and characteriza-
tion of specific events of intestinal motility has been done, such as intestinal
contractions detection [18], [19] and [20]. Besides, in [6] and [7] the authors
have approached the evaluation of motility from WCE images. Those two
papers are an extension of works on specific events characterization making
the analysis of the small intestine motility more complex. Both methods,
first, extract several motility descriptors (each descriptor representing a spe-
cific intestinal event) from WCE videos, and second, combine the extracted
characteristics and draw a conclusion on small intestine motility. However,
as both methods use a multidimensional and non linear classifiers, the inter-
pretation of the results by the physicians is complicated. It is hard to get an
intuition about what is happening inside the small intestine.

Regarding the problem of WCE video visualization techniques, the re-
searchers have focused their efforts on video compaction, resulting in elimi-
nating/compacting similar frames [21], [22], [23] and/or by applying variable
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Figure 5: Example of fixed cuts (first row) and adaptable cuts (second row).

sampling rate at acquisition step [24]. Video compaction, by elimination of
the frames of the video in which the capsule is paralyzed, permits to reduce
the experts skimming process reducing the time needed for video visualiza-
tion. However, only one work addresses the intestinal motility [24]. In this
work, the proposed video visualization removes the central part of the frame,
focusing on the wall visualization. This leads that the presence of the lumen
information is not considered in the video visualization.

To the best of our knowledge, no other works have been proposed to
improve the visualization of the motility and at the moment there does not
exist any efficient and compact visualization technique suitable for small
intestine motility analysis using the WCE videos.

In this paper, a novel technique, called Adaptive Cut (Acut) longitudi-
nal view, for visualization of WCE videos is presented. The paper addresses
the problem of choosing the optimal sequence of cuts through the consecu-
tive frames of the video in order to optimally represent the intestinal motility.
Due to the free movement of the capsule inside the intestine, the lumen is not
always presented in the center of the frame. Therefore, a straight-forward ap-
proach to cut through a fixed angle (e.g. the vertical line) of the pixels of the
image will lead to losing the motility information (for an example of a fixed
cut see Fig. 5(top)). The proposed methodology is based on an optimization
problem that maximizes the probability of passing through the lumen in or-
der to preserve motility information in the new visualization scheme (for an
example of adaptive cut see Fig. 5(bottom)). The main advantages of the
proposed method are:

• It reduces the information provided by the WCE video, transforming
3D video signal into 2D image and thus permits to evaluate, by an
expert, the intestinal motility, in a quick view.

• It preserves the motility information by applying adaptive cuts that
maintain, where possible, the lumen/wall information.
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(a) (b)

Figure 6: a) An illustration of the cut angle αi. Left ith image, right all possible cuts
through the original image. b) A graph illustration of Dynamic Programming problem in
WCE video.

The paper is divided as follows: In Section 2, the algorithm for adaptive
image cuts (Acut) based on dynamic programing is presented. Section 3
shows experimental results and validation. Finally, Section 4 concludes the
paper.

2. Adaptive cuts for longitudinal view

Let us consider a longitudinal view mosaic that is obtained by cutting
a stripe of pixels from consecutive frames of a video. In this section, the
algorithm for adaptive longitudinal cuts is presented. The word adaptive,
in this context, means that the algorithm, for each video, searches for an
optimal path through all video frames, considering for each frame a set of all
possible cuts.

The WCE video can be seen as a chain of n frames. Each frame i has
m possible cuts αi ∈ Ω = {1, · · · ,m}, where the angle αi denotes the angle
between the vertical line passing through the center of the frame and the
line representing the cut (see Fig. 6(a)). Moreover, let us define the cost of
passing from cut αi in frame i to cut αi+1 in frame i+ 1 as V (αi, αi+1).

The problem of adaptive longitudinal view construction can be seen as
an optimization problem, where two constrains are introduced: 1) the lumen
visibility and 2) the smoothness of the view. The first term ensures that
the cut passes through the lumen and thus ensures its visualization in the
longitudinal view, while the smoothness term is important to avoid sudden
changes between consecutive frames and thus maintain the interpretability of
the view. This task can be reformulated as a problem of finding an optimal
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path (presented in red in the graph on Fig. 6(b)). The cost of a candidate
solution (α1, · · · , αn) to the problem can be defined according to the following
cost equation [25]:

E(α1, · · · , αn) =
n∑

i=1

D(αi) +
n∑

i=2

V (αi−1, αi). (1)

The terms D(αi) are used to ensure that the cut in the ith image passes
through the lumen, while the V (αi−1, αi) ensures that the change of angles
αi−1 and αi is smooth (this term captures the cost of change between two
consecutive frames, i − 1 and i). The best solution is the one that passes
through all video frames and has the minimal cost.

Because of the size of the WCE video (n up to 60000 frames), we propose
to use Dynamic Programming (DP) in order to find the minimum of the
function described by Eq. (1) and to obtain the angles for the cuts in the
adaptive longitudinal view of the WCE video.

2.1. Dynamic Programming

Dynamic Programming is broadly used in discrete optimization problems.
The DP finds the global optimum to the given problem. The basic idea of
DP is to decompose a problem into a set of subproblems, where the original
solution can be quickly solved and the subproblems can be efficiently solved
in a recursive way [25]. Hence, the difference with respect to the classical
recursive methods is the memoization (storing the solutions to already solved
subproblems).

Let the table B(αi) denote the cost of the best assignment of angle cuts
to the elements from 1 to i, with the constraint that ith element has label
αi. The size of the table B is n×m, where m is the cardinality of the set Ω
and n the number of frames. The table B(αi) can be filled in increasing i by
using the following recursive equations:

B(α1) = D(α1),

B(αi) = D(αi) +minαi−1
(B(αi−1) + V (αi−1, αi)) (2)

The subproblems are defined as: for the first frame, B(α1) is as the cost
of assigning the angle D(α1) to the first frame. For every other frame, B(αi)
is the cost of assigning the angle D(αi) plus the minimal transition cost from
i− 1th to the ith frame minαi−1

(B(αi−1) + V (αi−1, αi)).
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In order to avoid recalculating the solutions to sub-problems, a matrix
T is being filled in while calculating the tables B(αi). The matrix T stores
optimal solutions to sub-problems (thanks to this book-keeping, each sub-
problem is calculated only once). Each row of the matrix has a size of m and
stores the ”best way” to get to the ith solution from the i−1th solution. Each
time a new value is added to the B(αi), the matrix T is updated according
to the rule:

T (αi) = argmin
αi−1

(B(αi−1) + V (αi−1, αi)) (3)

As a result, the matrix T stores the indices of nodes through which the
algorithm should pass in order to get the optimal solution to the problem.
Finally, the overall solution is tracked back αi−1 = T (αi) starting at i = n.
And as a result the sequence of optimal cuts (α1, · · · , αn) through all frames
in the video is obtained. This sequence of optimal cuts can be seen as the
path of minimal cost through the frames in the video.

2.2. Lumen visibility

The lumen in the WCE image is seen as a dark blob often surrounded by
the intestinal wall. The image cut that passes through the intestinal lumen
can be characterized in terms of mean and variance of the color intensity. In
order to ensure the lumen visibility, the algorithm is looking for the cut of
high variance and low mean value (mean and variance are calculated using
the pixels that compose the cut). High variance σ2 assures that the cut
preserves maximal information of the frame maintaining, where possible,
the lumen/wall information. Low mean value µ assures that the cut passes
through the dark area of the image. Note that the dark area of the image
presents a lumen with high probability.

Let x(αi) denote the vector of the pixels from the image cut localized in
the angle αi and passing through the center of the image (see Fig. 6(a)), the
lumen visibility cost D can be defined as follows:

D(αi) = 1/(σ(x(αi)) + 1) + µ(x(αi)) (4)

where it is assumed that the values of the vector x(αi) are in the range
[0, 1].

2.3. Smoothness

In order to assure the longitudinal view smoothness, a term that con-
trols the changes between the angles of the consecutive frames is introduced.
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The smoothness is restricted by two factors: 1) angle change V ′(αi−1, αi) =
180◦ − |180◦ − |αi−1 − αi|| and 2) similarity between two consecutive cuts
V ′′(αi−1, αi) = ‖x(αi−1)− x(αi)‖2. The final smoothness term V is defined
as follows:

V (αi−1, αi) = β(V ′(αi−1, αi)/γ1)
2 + (1− β)(V ′′(αi−1, αi)/γ2)

2 (5)

where quadratic terms in V ′ and V ′′ are introduced in order to penalize the
sudden changes, γ1, γ1 normalization terms, and β ∈ [0, 1] is a parameter
controlling the weight between change of angles and similarity of cuts in
consecutive frames.

2.4. Computational issues

Let m denote the number of possible cuts and n denote the number
of frames for each frame. At each iteration the algorithm calculates: 1) m
means of pixels in cut; 2) m variances of pixels in cut; 3) m2 angle differences
between cuts in consecutive frames and 4) m2 similarities between cuts in
consecutive frames. So, the computational complexity of the algorithm is
O(m2n).

We have implemented the algorithm in Matlab and run the code on
2.6GHz Intel Xenon machine with 16 GB of memory. The running time
for one video of 9679 frames was of 1468 seconds. The memory used: 1) cost
matrix storing 90 cuts for every frame of double precision 6.8 MB and 2)
vector with 1 uint8 index for each frame 76 kB.

3. Results

We tested our algorithm on synthetic data and on WCE data. The WCE
data has been obtained using the SB2 capsule endoscopy camera developed by
Given Imaging, Ltd., Israel [5]. All videos have been conducted at Digestive
Diseases Department, Hospital General ”Vall d’Hebron” in Barcelona, Spain.

During the validation three types of cuts for longitudinal view are tested:

1. (Acut) - The adaptive cuts described in section 2,
2. (Acut−) - The modification of the proposed algorithm by removing the

smoothing term V. In this way the Eq. (1) transforms to E(α1, · · · , αn) =∑n

i=1 D(αi). This is done to test the influence of the smoothness term
in the energy function,

3. (Fcut) Longitudinal view with fixed cut.
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(a)

(b)

(c)

(d)

Figure 7: Some examples of the synthetically created intestinal events. From the top: a)
tunnel, b) static, c) contractions and d) undefined movement.

3.1. Synthetic data

In this experiment, a synthetic video of 40.000 frames has been created
with frame rate of 2 fps. On a uniform background, a blob has been placed.
The blob position has been changed on consecutive frames depending on the
intestinal event. The following intestinal events have been used to create the
synthetic video: {tunnel, static, contraction, undefined movement}. In order
to make the video more realistic, the events order and duration have been
defined with random number generator.

The following definitions of the specific events have been used to generate
the sequence:

• Tunnel - defined as a sequence of paralyzed intestine with open lumen.
Lumen size is defined as highly constant (±2 pixels difference in diam-
eter between two consecutive frames) and highly opened (larger than
70 pixel in diameter). An example of the tunnel sequence is presented
on Fig. 7(a).

• Static - defined as a sequence of paralyzed intestine with closed lumen
(no lumen observed in the frame). An example of the static sequence
is presented on Fig. 7(b).

• Contraction - defined as a sequence of frames with the presence of
intestinal contraction defined as symmetric pattern of open-close-open
lumen with duration of 9 frames and a fixed frequency of 6 contractions
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(a)

(b)

(c)

(d)

Figure 8: An example of three longitudinal views generated from the synthetic data.
From the top: a) ground truth (blue - contraction sequence, black - undefined movement
sequence, red - static sequence, purple - tunnel sequence), b) Fcut, c) Acut− and d) Acut.
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Fcut Acut− Acut
73% 85% 92%

Table 1: Table presenting the video segmentation score for different cuts. The number
represents the segmentation accuracy.

per minute. The lumen size of the central frame of the intestinal con-
traction has been defined as 10% of the initial lumen size. An example
of the contraction sequence is presented on Fig. 7(c).

• Undefined movement - defined as an irregular movement of the lu-
men size (±30 pixels variation between consecutive frames) and capsule
(±30 pixels variation between consecutive frames). An example of the
undefined movement sequence is presented on Fig. 7(d).

Some examples of the longitudinal views that are obtained using different
cuts are presented in Fig. 8. Note that, the Fcut losses the blob information
and leads to miss-interpretation of the events (e. g. tunnel sequence, Fig. 8(a)
vs. Fig. 8(b)). Applying the adaptive cut without the smoothing term Acut−

leads to the good lumen detection, but the view is uninterpretable (here, only
the static sequence can be visually detected). The adaptive cut Acut presents
well both lumen information and view smoothness.

The synthetic video has been presented to an expert asking him/her to
recognize and to mark the beginning and the end of the intestinal event
sequences. The results were evaluated using the Jaccard index (1 means
perfect video segmentation and 0 means no coincidence between visually
detected sequences and ground through).

The overall results are presented in Tab. 1. As it can be seen, the longi-
tudinal view obtained by using Acut method achieves 92% and outperforms
Fcut and Acut− methods (73% and 85%, accordingly). Analyzing the con-
fusion matrixes presented on Fig. 9, the following conclusions can be drown:

• In Fcut, the tunnel sequences are frequently confused with static se-
quences, this happens when the blob is placed out of the cutting plane
(see Fig. 9(a)).

• Applying the Acut− improves the lumen detection reducing the confu-
sion between tunnel and static sequences. The contraction detection
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(a)

(b)

(c)

Figure 9: Confusions matrixes presenting Jaccard index obtained using the synthetic data.
a) Fcut, b) Acut− and c) Acut.

rate is still small due to lack of the smoothness, sequences are often
confused with undefined sequences (see Fig. 9(b)).

• In Acut, the biggest confusion is caused by the undefined sequence. The
expert has a problem in distinguishing between the undefined and the
contraction sequence and between the undefined and tunnel sequence.
Still note that the confusion is small, less than 6% (see Fig. 9(c)).

3.2. Blob detection

In this part of the validation, we evaluate the blob detection using differ-
ent cuts. Here, the correct detection means that the cut passes through the
intestinal lumen. The lumen has been manually segmented in 24740 frames
from WCE video. As expected, applying the smoothing term reduces blob
detection rate by 7% resulting in overall score of 87% of the blob detected
that is a good score in comparison to fixed cut that losses a lumen one every
two frames. The results are presented in Tab. 2.

3.3. Real data

As a first step of the validation on real data, the qualitative inspection
of the videos obtained with the Acut and the Fcut is done. Fig. 10 shows
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Acut Acut− Fcut
detection rate 87% 94% 55%

Table 2: Table presenting results on lumen detection using different image cuts. Numbers
represent the detection rate.

several examples of applying the Acut and the Fcut to the WCE videos. The
difference between cuts is clearly visible when analyzing the lumen. In detail,
the difference (Acut vs. Fcut):

• Fig. 10(a) vs. Fig. 10(b) - the lumen is better followed by the Acut,
where the reconstruction of the tunnel is clearly visible, while in the
case of Fcut it can be observed that the intestinal wall is present in
some parts of the intestinal tunnel.

• Fig. 10(c) vs. Fig. 10(d) - Acut presents the lumen in the whole seg-
ment, while Fcut presents the lumen only in some parts. The presence
of the lumen in the longitudinal view facilitates the interpretation of
the motility information.

• Fig. 10(e) vs. Fig. 10(f) - the larger radius of tunnel is visible in Acut,
while Fcut shows the small radius. Moreover, the Acut follows the
radius while it is changing the position in the WCE video.

• Fig. 10(g) vs. Fig. 10(h) - Acut presents well the open-close-open lumen
pattern, while in Acut this pattern is not clearly visible.

In the next part of the validation, the Acut longitudinal view (Fig. 11)
and the original WCE video (using Rapid Viewer interface see Fig. 1) were
presented to an expert asking him/her to mark the beginning and the end
of the following sequences: {tunnel, static, contraction, turbid and undefined

movement }. Table 3 points out the main visual aspects of different segments
seen in longitudinal view.

Some examples of sequences seen on longitudinal view can be seen in
Fig. 12:

• Fig. 12(a) and Fig. 12(b) show static sequences that are seen as homo-
geneous images of intestinal wall (tissue),
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10: Visual comparison of different cuts (a, c, e, g) - Acut, (b, d, f, h) - Fcut.

Figure 11: An example of longitudinal view presenting whole small intestine from duode-
num to cecum. Each white stripe marks 10 minutes of the video duration.
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Contraction Static Tunnel Turbid
Lumen presence Yes No or small lumen Yes Can be occluded
Intestine tissue
presence

Yes Yes Yes Can be occluded

Colors seen

Orange (tis-
sue) and dark
brown/black
(lumen)

Orange (tissue)

Orange (tis-
sue) and dark
brown/black
(lumen)

Light green to
dark brown
(turbid), and
optionally orange
(tissue)

Lumen/tissue
movement

Yes No
No or small
changes

Can be occluded

Open-close-open
lumen pattern

Yes (visible as
”stripes”)

No No No

Table 3: Table pointing out the main visual aspects of different sequences seen on longi-
tudinal view.

• Fig. 12(c) and Fig. 12(d) show tunnel sequences where both intestinal
lumen and wall are static and clearly visible,

• Fig. 12(e) and Fig. 12(f) show turbid sequences where the green color
of intestinal content occluding lumen/wall can be seen,

• Fig. 12(g) and Fig. 12(h) show contraction sequences with the period-
ical changes in the visible lumen size.

It is interesting to see that the turbid mixing contractions on Fig. 12(e).
Also, note the variety in contraction rhythm in, Fig. 12(g) and Fig. 12(h).

In the first step, the expert labeled3 five types of event sequences in
a video view. In the second part, the expert labeled the sequences using
longitudinal view (Acut). The similarity between different annotations in
video view and in longitudinal view (Acut) is 81%. The time needed by
an expert for visual inspection of the data of duration of 164 minutes was
80 minutes in video display vs. 18 minutes in the longitudinal view. The
longitudinal view reduces the inspection time by 62 minutes that means the
reduction of 444%.

For the obtained annotations, the confusion matrix presenting the over-
lapping between two annotations, was calculated. Analyzing the confusion
matrix presented on Fig. 13 the following conclusions can be drawn:

3The experts knew how the Acut works, and knew that the task is being timed.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 12: Examples of longitudinal views presenting different intestinal events (a - b)
static, (c - d) tunnel, (e - f) turbid and (g - h) contractions.
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Figure 13: Confusion matrix for annotation comparison between video based annotations
and longitudinal view based annotations. The numbers represent the Jaccard index.

• Turbid sequences are coinciding quite well between both annotations.
The biggest confusion 7% is caused by the tunnel sequence in the lon-
gitudinal view. This is due to the opaque turbid that is difficult to see
on the longitudinal view while, it only slightly hinders the lumen/wall
(in this case hinders a tunnel sequence).

• The 50% coincidence in tunnel between the annotations in the longi-
tudinal view and the video view is caused by: 1) opaque turbid that
is difficult to detect in longitudinal view and 2) the camera rotation
together with small intestine wall oscillations make it difficult to spot
the tunnel sequence in video view.

• Static sequences coincide well in both annotations with the score of
67%. The biggest confusion is between static and undefined movement
sequence.

• Contractions have the highest score of coincidence of all the annotated
events 74%.

To check the intra-user variability, another user labeled the events in
the longitudinal view image. The obtained kappa score was: 0.80, with
0.84 observed agreement and 0.21 random agreement. Analyzing the confu-
sions/errors of the annotations, the following observations can be done:

• Turbid vs. contractions - one expert in the presence of turbid and
contractions preferred to annotate turbid, the other annotated con-
tractions.

• Undefined - this label is used whenever an expert is not sure about the
considered event. In many cases, it is used in borderline situations.
When analyzing the annotations, it can be seen that most frequent
confusion is between contractions and turbid.
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4. Conclusions

In this paper, a fast and efficient algorithm for construction of adaptive
longitudinal view for motility analysis has been presented. It allows compact
display and fast inspection of motility data acquired with WCE. To the best
of our knowledge, no previous longitudinal visualization technique has been
tested for motility analysis. The algorithm adapts the frame cut angle to the
lumen position by the minimization of a cost function. This problem formu-
lation permits to apply the Dynamic Programming framework to efficiently
find the global minimum to the proposed cost function. Experimental results
on both: 1) synthetic data and 2) WCE data show that the proposed algo-
rithm preserves well lumen/wall separation allowing to inspect the intestine
motility in details. The annotations obtained by using adaptive longitudinal
view coincide well with the ones obtained by using video view. Moreover the
time needed for visual inspection is four time faster in longitudinal view than
in video view.

This visualization technique offers a new, holistic view into small intestine
motility. It opens new investigation lines in the intestinal motility analysis,
allowing to see the events that are difficult to spot by using traditional WCE
video analysis. It would be interesting to analyze the different contractile
rhythms and sequence combinations (e. g. one-minute-cycle, where each
minute the intestine changes the state from paralyzed intestine to contractile
movement).

The proposed method has some limitations that are worth mentioning.
First of all, the cut passes always through the central point of the frame,
this set-up reduces the space of possible cuts omitting the cuts that are not
passing through the center. As a result, the obtained solution does not have
to be the solution of the maximal lumen region. Second limitation is that the
first term of proposed energy function (based on basic statistics of the cut)
may not infer lumen regions, it only assures that the cut passes through dark
part of the frame as it is assumed that the lumen is a dark blob. Examples
of the frames where this assumption might fail are: frames with dark food
content or water bubbles. This fact is not critical since usually frames with
food content or water bubbles use to have a significant coverage and thus
any cut has the same clinical interest during inspection and analysis.

The proposed algorithm could be further improved by placing the lumen
position in the center of the longitudinal view. This is not an easy task
mainly because of the free capsule movement inside the intestine, and due to
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the fact that in a lot of frames the lumen is not visible. Placing the lumen in
the center of the view could be important step to obtain 3D reconstruction
and display of small intestine that could be of high interest to detect lesions
and achieve image-guided interventions.
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